
ERROR CONTROL CODING (ECE 548) January 24, 2019
Rutgers, Spring 2019 Course Syllabus

ERROR CONTROL CODING, ECE 548

You may have heard of Morse, bar and QR codes, ISBN, and blockchains. These codes, and many
more, play important roles in numerous scientific disciplines and virtually all telecommunication
systems. In practice, codes are used to efficiently insure reliable, secure, and private transmission
and storage of information. In theory, codes are used to e.g., study computational complexity, de-
sign screening experiments, provide a bridge between statistical mechanics and information theory,
and even help understand the (quantum) spacetime fabric of reality. One can also use codes for en-
tertainment, e.g., to solve balance puzzles such as the penny weighing problem, or to design social
(hat color) guessing-game strategies that significantly increase the odds of winning.

Learning Objectives:

The students will learn the fundamentals of coding theory and practice, as well as a selected
number of more advanced topics of their individual interests.

Instructor: Emina Soljanin emina.soljanin@rutgers.edu

Office hours: by appointment, CoRE 511, 848-445-5256.

Class time and place: Tue&Thr, 1:40 PM – 3:00 PM, EE-203.

Prerequisites: probability and algebra at the undergraduate level.

Grading: homework 20%, 3 midterm exams 15% each, final project 35%.
Exams will be in class, on February 12 and on (or about) March 14 and April 18.

Text: Error Control Coding (2nd Edition) by Lin and Costello
not required

Course outline:

• Fundamental concepts through examples

• Linear block codes, Ch. 2–7

• Convolutional codes, Ch. 11&12

• Turbo codes, Ch. 16

• LDPC codes, Ch. 17

• Hybrid ARQ, Ch. 22

• Network, rateless, storage, polar, and spatially-coupled codes

• Coding theory in other scientific disciplines

The extent to which these topics will be covered will vary in accordance with the backgrounds and
research needs of the students in the class.

mailto:emina.soljanin@rutgers.edu
callto:848-445-5256

Error Control Coding 1
1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin
Lecture #2, January 24

This lecture2 informally introduces several important notions: informa- 2 You are likely to find this class more
conceptually than technically hard. In
that sense, this is the hardest lecture.

tion, hashing, and (decoding) algorithms.

Bits of Information

Bit is a unit of information that we get when we ask a yes/no question
– yes or no, true or false, on or off, 0 or 1. Suppose you want to find
out the position of the black king (that can be equally likely anywhere)
on a chessboard. Take a look at Fig. 1. What is the minimum number
of yes/no questions you need to ask?

1

a

2

b

3

c

4

d

5

e

6

f

7

g

8

h

k

Figure 1: What is the minimum
number of yes/no questions that
have to be asked to locate the king
on a chessboard?

To represent a bit in a computer, we need a physical entity which
can exist in two distinguishable physical states. For example, mag-
netized cells in hard disk drives could be oriented in two different
directions: “up” (0) or “down” (1). Flesh memory cells made from
floating-gate transistors act as switches that could be open (0) or closed
(1). (There are multi-level cell devices that can store more than one bit
per cell.)

A physical system with N = 2b distinguishable physical states can
represent b bits of information. To specify an object in a set of N, we
need dlog2 Ne binary digits; Table 1 show how for N = 8.

Decimal Binary mod 2 Parity

0 000 0 0
1 001 1 1
2 010 0 1
3 011 1 0
4 100 0 1
5 101 1 0
6 110 0 0
7 111 1 1

Table 1: We can specify each ob-
ject in a set of 8 by assigning to it
a unique label, e.g., a decimal num-
ber or a binary string.

Note that distinguishable is the crucial word here. Distinguish-
able how? By the naked eye? By a given measuring apparatus? Is
there some fundamental limit to the number of states that can be dis-
tinguished by a physical measurement regardless of whether we can
build it or not? If your measuring apparatus can only tell you the last
digits of the numbers in Table 1, you will get only a single bit of infor-
mation telling you whether the number is even or odd (see the third
column of Table 1). You will get a single but different bit of informa-
tion if your measuring apparatus can only tell you the parity, namely,

error control coding 2

the XOR of the digits in the binary string representing the number (see
the fourth column of Table 1).

Algorithms and Hashing

Figure 2: How would you use a bal-
ance scale to determine which of the
8 pennies has a different weight?

A Penny Weighing Problem: You are given a balance scale and 8 pennies,
one of which has a different weight. What is the minimum number of
measurements that will always let you determine which penny has a
different weight? How will you perform the measurements?

The minimum number of measurements that will always let us de-
termine which penny has a different weight is three. Why? A possible
way to perform the three measurements3 is given in Table 2. The 3 an algorithm
three rows starting with M1, M2, and M3 correspond to the three mea-
surements. The table entry at the intersection between a column cor-
responding to a penny and a raw corresponding to a measurement
indicates whether the penny is put on the scale in that measurement
(0 if it is not) and if yes, whether it is placed on the left platform (L) or
on the right platform R.

penny

0 1 2 3 4 5 6 7

on
sc

al
e M1 0 0 0 0 L L R R

M2 0 0 L L 0 0 R R

M3 0 L 0 L 0 R 0 R

Table 2: Pennies placement on the
scale in three measurements. A
penny cen be placed left (L), right
(R) or not at all.

Suppose that the penny 4 has different weight, then measurement
M1 will result in an unbalanced state of the scale and M2 and M3 in
the balanced state of the scale, as illustrated in Fig. 3.

4 & 5 6 & 7 2 & 3 6 & 7 1 & 3 5 & 7

Figure 3: An example of measure-
ment outcomes. Which penny has
different weight?

Observe that since there is only one penny of different weight, a
measurement will result in an unbalanced state of the scale iff the
penny of different weight is placed on the scale in that measurement.
Therefore, the possible measurement outcomes are as given in Table 3.
In each measurement, the scale can be either balanced (0) or unbal-
anced (1). Not that for each of the 8 “different penny” possibilities,

error control coding 3

we have a different set of measurement outcomes. Therefore a set of
measurement outcomes uniquely identifies a different penny.

different penny

0 1 2 3 4 5 6 7

sc
al

e
st

at
e M1 0 0 0 0 1 1 1 1

M2 0 0 1 1 0 0 1 1

M3 0 1 0 1 0 1 0 1

Table 3: Scale states corresponding
to measurements for each of the 8
“different panny” possibilities. The
scale can be either balanced (0) or
unbalanced (1).

Some Observations

1. We have committed to the way we perform the three measurements
before the measuring process started. We do not adapt4 our measur- 4 Non-adaptive measuring can be as

powerful as adaptive.ing actions based on the results of the previous measurement, e.g.,
how we perform M2 does not change based on the outcome of M1.

2. Having some additional information could be helpful in designing
a set of measurements, even if it cannot reduce the number of mea-
surements.

3. How we conduct measurements evidently depends on the kind of
scale we have. And so does the number of measurements. What
would you do if you had a scale which has the unit weight corre-
sponding to a regular penny fixed to the right tray, as in Fig. 4, and
you can only use the left tray to place pennies?

unit weight

Figure 4: In this scale, there is some
unit weight fixed to the right tray.

Homework - due January 31

Find all 1 ⇥ 7 binary raw vectors c such that c ·H = 0 where

H =

2

64
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

3

75

and the addition and multiplication are defined as follows:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

In other words, find all vectors which are orthogonal to all three rows
of the matrix. For example, one such vector is

h
1 1 1 1 1 1 1

i
.

Error Control Coding
1

1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin

Lecture #3, January 29

This lecture covers some fundamental material in abstract algebra we

use in coding theory.

Bits as Mathematical Objects

In this class, we will treat bits as mathematical objects.
2

For us, bits 2 Other classes at ECE and Physics

study bits as physical systems.take values in the set {0, 1} where we can add and multiply as follows:

XOR

� 0 1
0 0 1
1 1 0

AND

· 0 1
0 0 0
1 0 1

Figure 1: Binary arithmetic.

Associative and distributive laws for binary addition and multipli-

cation are identical to those for real numbers. Strings of n bits are

mathematical objects that live in the field F2n , which is a set of 2n

elements with specially defined addition and multiplication.

Let c be a 1⇥7 binary raw vector and H the following binary matrix:

H =

2

64
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

3

75

Recall our penny weighing problem, and consider the product c ·H =

0, where the arithmetic is done as defined in Fig. 1. Check to see that

this multiplication is performing the measurements we did with a bal-

ance scale in the penny weighing problem. The multiplication result

corresponds to the binary representation of the number indicating the

position of the different bit.

After the measuring, in order make all bits identical, we would have

to flip the bit at position 3. This flipping can be performed by e.g., 1) a

NOT operation on the bit in position 3 or 2) an XOR operation (binary

addition in Fig. 1) on the bit n position 3 together with the bit of the

fixed value 1.

Math Interlude

Coding theory relies on several branches of mathematics, which we

will introduce as the need arises. In order to be able to study linear

codes, we next review some basic algebraic notions.

error control coding 2

Fundamental Structures in Abstract Algebra

Group (G, �) A group is a set G together with an operation �: G⇥G!
G satisfying:

1. � is associative: (a � b) � c = a � (b � c)

2. There is an element e in G s.t. a � e = a and e � a = a for every

element a in G. e is called neutral element.

3. For every element a in G, there is an element a
-1

in G s.t. a �a-1 =

a
-1 � a = e. a

-1
is called the inverse of a.

If � is commutative, we say that G is commutative or Abelian.

Two examples:

1.
�
{0, 1},�

�
is an additive group.

2.
�
{0, 1}, ·

�
is not a group.Depending on the context, we will call a group 1) additive, its op-

eration + addition, and its neutral element 0, or 2) multiplicative, its

operation ⇤ or · multiplication, and its neutral element 1 (unity).

Ring (A,+, ⇤) The most basic of the two-operation structures is called

a ring: Ring is a set A with operations called addition + and multipli-

cation ⇤ satisfying:

Examples of rings:

1. set of integers Z

2. set of n⇥n matrices over Z

Natural numbers N is not a ring.1. (A,+) is an Abelian group.

2. Multiplication is associative.

3. Multiplication is distributive over addition. That is, for all a, b, and

c in A, we have a(b+ c) = ab+ ac

When the multiplication operation is commutative, we say that A is a

commutative (Abelian) ring.

Field (F,+, ⇤) If (F,+, ⇤) is a commutative ring with unity in which

every nonzero element has a multiplicative inverse, it is called a field:

Examples of fields:

1. set of rational numbers (Q,+, ·)

2. set of complex numbers (C,+, ·)

3. finite field F2 =
�
{0, 1},�, ·

�
1. (F,+) is an Abelian group.

2. (F \ {0}, ⇤) is an Abelian group.

A linear space over a field F is an additive Abelian group v together

with an operation of multiplication by scalars F⇥ V ! V . The elements

of v are called vectors and the elements of F are called scalars. The

product of ↵ 2 F and v 2 V is denoted by ↵v 2 V . In addition, there

are requirements connecting F and v:

For all ↵,� 2 F and v,w 2 V , we have

Examples of linear spaces over the

binary field F2 (any field):

1. Fn
2 of n-tuples over F2

aka n-space over F2

2. Fk⇥n
2 of k⇥n matrices over F2

3. All polynomials over F2

1. (↵�)v = ↵(�v)

2. ↵(v+w) = ↵v+↵w

error control coding 3

3. (↵+�)v = ↵v+�v

4. 1v = v, where 1 is the unity in F

A linear combination of vectors v1, . . . , vm is a vector of the form

↵1v1 + · · ·+↵mvm.

Linear subspace W of V is a nonempty subset (W ✓ V) closed under

linear combinations.

The span of vectors v1, . . . , vm is the set of all linear combinations of

v1, . . . , vm:

span(v1, . . . , vm) = {↵1v1 + · · ·+↵nvm | ↵1, . . . ,↵m 2 Fq}.

Vectors v1, . . . , vm are linearly independent when

↵1v1 + · · ·+↵mvm = 0 only if ↵1 = · · · = ↵m = 0.

A basis of a vector space V is a set of linearly independent vectors in

V that spans v.

The dimension of a vector space v is the number
3

of vectors of a basis 3 Does each basis have the same

number of vectors?of v over F.

An inner product space is a vector space V over the field F together

with an inner product map h·, ·i : V ⇥ V ! F. We will mostly work

with n-spaces over finite fields and define the inner product as follows:

Let u = (u1, . . . ,un) and v = (v1, . . . , vn) be two vectors in Fn
, then

hu, vi =
nX

i=1

uivi = u1v1 + · · ·+ unvn.

We say that two vectors are orthogonal iff their inner product is zero.
4 4 Show that the set of all 1⇥ 7 binary

raw vectors c such that c ·HT = 0
form a subspace of F

7
2. (H is the 3⇥

7 matrix defined above.)

Let V and W be linear spaces over the same field. Then f : V !W is a

linear map if for every v,u 2 V and ↵ 2 F, we have

1. f(v+ u) = f(v) + f(u) additive

2. f(↵v) = ↵f(v) homogeneous

Encoder for an [n,k]q linear code is a linear map Fk
q ! Fn

q .

An [n,k]q linear code is a k dimensional subspace of Fn
q .

Error Control Coding
1

1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin

Lecture #4, January 31

This lecture defines (systematic) linear block codes and introduces the

notion of minimum distance and error correction.

Encoder for an [n,k]q linear code is a linear map Fk
q ! Fn

q .

An [n,k]q linear code is a k dimensional subspace of Fn
q .

We have seen last time that the set of all 1⇥ 7 binary raw vectors c

such that c ·HT = 0 form a subspace of F
7
2, where H is the 3⇥ 7 matrix

H =

2

64
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

3

75 .

Every [n,k] linear block code C has associated with it an (n- k)⇥ n

matrix H with linearly independent raws and the property that

c ·HT = 0

We refer to such H as the parity check matrix of the code.
2

Linear code 2 Is the parity check matrix unique?

is the null space of the parity check matrix. A generator matrix G is a

k⇥n matrix whose rows form a basis for a linear code.
3 3 What is GH

T
equal to?

What About Encoding?

With the Parity Check Matrix: We need to generate 1⇥ n vectors that

satisfy (n- k) linearly independent equations c ·HT = 0. We can do

that by taking some k of the components of these vectors to be arbi-

trarily specified, and then solve for the remaining (n- k) components.

The arbitrarily specified components correspond to the data (message,

information) word.

With the Generator Matrix: If we know the generator matrix G, we can

find all codewords as the linear combinations of the raws of G. The

coefficients in this linear combinations correspond to data word.

We can map the data into codewords by, e.g., encoding circuitry or lookup

tables.

Systematic Codes

If the generator matrix for an [n,k]-code is in a standard form

G =
h
Ik|P

i

error control coding 2

we say that the code is systematic. The parity check matrix for a sys-

tematic code can be easily derived from its generator matrix (and vice

versa):

H =
h
-P

>|In-k

i
,

) G ·HT = P- P = 0

data codeword

0000 0000000
0001 0001011
0010 0010111
0011 0011100
0100 0100110
0101 0101101
0110 0110001
0111 0111010
1000 1000101
1001 1001110
1010 1010010
1011 1011001
1100 1100011
1101 1101000
1110 1110100
1111 1111111

G =

2

6664

1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 1 1

3

7775 , H =

2

64
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1

3

75

Figure 1: A Systematic [7, 4] Ham-

ming Code

What about Errors?

What can we do with these codes? How good are they? The bit-flip

error model is described by the binary addition of vectors having 1s at

places where errors occurred and zeros otherwise. That is, if we send

a codeword c 2 C and receive it with its bits flipped according to error

vector e 2 Fn
2 , we receive word r given by

4 4) r can be any vector in Fn
2 .

r = c+ e

For n = 7, we can have, e.g.,

e =
h
0 1 0 0 0 0 0

i
meaning an error happened at position 1.

e =
h
0 0 0 0 0 1 1

i
meaning errors happened at positions 6 and 7.

error control coding 3

What about Decoding?

We can find c from r by computing the syndrome:

r ·HT = (c+ e) ·HT = c ·HT
| {z }

=0
+e ·HT = e ·HT syndrome s.

s = 0) r is a codeword.

In our original [7, 4] example, when s matches the i-th column of H,

that means that the i-th bit of c was flipped.)we can get c by flipping

back the i-th bit of r.
5 5 We will talk about syndrome de-

coding and other forms of decoding

later in the class.
When can one codeword be sent and another decoded?

The Hamming Weight and Distance

The Hamming Distance between two binary words is the number of

positions at which one has a 1 and the other 0.

The Hamming Weight of a binary word is the number of 1s in the

word (distance from the all 0 word).

The Minimum Distance d of a code is the smallest of all pairwise dis-

tances of its codewords (the minimum weight for linear codes).

There is one-to-one mapping between weight w codewords and linear

combinations of w columns of H that sum to 0. We are here dealing

with a [7, 4, 3]2 code.

Error Correction Capabilities

If a code has minimum distance d, it can 1) detect d- 1 and correct⌅
d-1

2
⇧

errors, and 2) recover from d - 1 erasures. An error can be

correctable, detectable, or undetectable.

The Error Probability over the BSC

The binary symmetric channel (BSC) with crossover probability p flips

its inputs with probability p. If the channel is memoryless, the each

bit in the input sequence is flipped independently of others. I an n-bit

word is sent through the channel, the probability that an error will be

made is

1. 1 - (1 - p)n if we don’t use a code (all bits have to be received

correctly)

2. 1- (1-p)n -
Pt

`=1
�n
`

�
p
`(1-p)n-`

if we use a code with distance

d with t =
⌅
d-1

2
⇧

What is the price we have to pay for using coding?

error control coding 4

Hamming Codes With Parameter r > 2

Its r⇥ (2r-1) parity-)check has for its columns all the non-zero length-

r binary strings.

)
block length 2r - 1
message length 2r - 1 - r

distance 3
alphabet size 2
[n,k,d]q [2r - 1, 2r - r- 1, 3]2-code

Homework – Due February 7

For the [7, 4, 3] Hamming code, find

1. the histogram of the pairwise distances between codewords,

2. the histogram of the codeword weights weights, and

3. the histogram of the distances between a non-zero codeword of

your choice and all codewords in the code.

Compare the three histograms.

Error Control Coding
1

1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin

Lecture #5, February 5

This lecture derives three bounds on codes.

The Hamming Weight and Distance

The Hamming Distance between two q-ary words is the number of
positions at which they differ.

The Hamming Weight of a q-ary word is the number of non-zero ele-
ments in the word (distance from the all-zero word).

The Minimum Distance d of a code is the smallest of all pairwise dis-
tances of its codewords (the minimum weight for linear codes).

Hamming Sphere B⇢(x) of radius ⇢ > 0 centered at a point x in Fn
q is

defined by
B⇢(x) = {y 2 Fn

q | d(y, x) 6 ⇢}.

Three Bounds on Codes

We would like to have codes with many codewords and large mini-
mum distance, but these are two competing requests. Why?

The Hamming (Sphere Packing) Bound

Let C be a q-ary code with length n and minimum distance d, and de-
note t = bd-1

2 c. Then, because spheres of radius t around codewords
do not touch, X

c2C

|Bt(c)| 6 qn

Since |Bt(c)| =
Pt

`=0
�n
`

�
(q- 1)`, we have the following upper bound

on the size of any q-ary code C:

|C| 6 qn

Pt
`=0

�n
`

�
(q- 1)`

) Any binary code with d = 3 has at most 2n/(1 +n)codewords.

Codes which achieve the sphere packing bound with equality are called
perfect codes. Hamming codes are perfect codes.2 2 Show that a Hamming code with

block length n has 2n/(1 +n) code-
words.

error control coding 2

The Gilbert-Varshamov Bound

Let Aq(n,d) denote the maximum possible size a q-ary code with
length n and minimum distance d can have. Consider the radius d-

1 spheres around codewords in a code of the maximum size. Any
word not in the code has to be in at least one such sphere. Why?
Consequently, we have

Aq(n,d) > qn

Pd-1
j=0

�n
j

�
(q- 1)j

.

The Singleton Bound

If we erase the first d - 1 letters of each codeword of a q-ary code
with length n and minimum distance d, the resulting words will be
all different. Since there are at most qn-d+1 different q-ary words of
length n- (d- 1), we have

|C| 6 qn-d+1.

Codes that achieve equality in the Singleton bound are called MDS
codes (maximum distance separable).

The Hat Problem

WHAT ARE THE ODDS OF WINNING THE FOLLOWING GAME?

Seven (in general n) prisoners enter a courtroom, and a red or a blue
hat is placed on each person’s head. The judge determines the color of
each hat by a fair-coin toss, with the outcome of one coin toss having
no effect on the others.3 Each person can see the other prisoners’ hats 3 Bernoulli trials.
but not his own.

No communication of any sort is allowed, except for an initial strat-

egy session before the game begins. Once they have had a chance to
look at the other hats, the prisoners must simultaneously guess the
color of their own hats or pass. The prisoners play as a team and all
win freedom when at least one prisoner guesses the color of his or her
own hat without any incorrect guesses being made.

WHAT IS A GOOD STRATEGY?

One of the prisoners proposes that he always guess RED while the
other prisoners pass, which would result into fifty-fifty odds for win-
ning. But there is a coding theorist in the group who claims they can
do better, if they follow his strategy.

The prisoners have to learn the codewords of the [7, 4, 3] Hamming
code, and will call the two colors 0 and 1. Each prisoner is assigned a
position number. If the 6 ordered bits visible to the prisoner look like

error control coding 3

a codeword that is punctured at his position, the prisoner guesses the
value that will make it a non-codeword. Otherwise, he passes.

WHAT IS THE BEST WE CAN DO?

The number of correct guesses x cannot be larger than the number of
the incorrect guesss y. Let W be the number of winning and L the
number of loosing outcomes. Note that W + L = 2n. The strategy
that minimizes L concentrates the y incorrect guesses into the L loos-
ing outcomes and spreads the x correct guesses over the W winning
outcomes.

L ·n = y > x = W

Since W + L = 2n, we have

W 6 2n ·n
n+ 1

and L > 2n

n+ 1

) The highest probability of winning is n
n+1 .

WHY IS THE HAMMING CODE STRATEGY OPTIMAL?

• Consider the example when n = 3 and the repetition code.

• Note that the prisoners will lose the game each time the hat color
assignment corresponds to a codeword.

• Prove that the prisoners will win the game each time the hat color
assignment corresponds to a non-codeword.

) The probability of wining is4 4 Recall the definition of Hamming
codes with parameter r from the last
lecture.2n - 2k

2n
=

2k(2n-k - 1)
2n-k

=
2r - 1

2r
=

n

n+ 1
.

Therefore the Haamming code strategy achieves the highest probabil-
ity of winning.
(You may want to see a NY Times article on this problem.)

http://nyti.ms/1RCw35J

Error Control Coding
1

1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin

Lecture #6, February 7

This lecture introduces dual codes and code weight enumerators.

Dual Code of a Linear Code

Recall that an [n,k]q linear code C is a k dimensional subspace of Fn
q .

Its dual code C?
is its orthogonal complement:

C? = {x 2 Fn

q | cxT = 0 8c 2 C}

Which codeword of the dual code you already know?

The parity-check matrix of C generates C?
.

What is the parity-check matrix of C?
? What is its dimension?

What is the dual of the dual code?

The dimension of C and its dual add up to the the dimension of the

vector space where they complement each other, that is Fn
q :

dimC+ dimC? = n.

=) C?
is an [n,n- k]q linear code.

Note that a code can be self-dual.

The [7, 3] Simplex Code

The parity check matrix of a code is the generator matrix of its dual

code. The dual code to the Hamming [7, 4] code is the [7, 3] Simplex

code. Therefore, its generator matrix is

G =

2

64
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

3

75

It encodes 3 data symbols a, b, and c into 7 coded symbols:

h
c b a

i
·G =

h
a b a+ b c a+ c b+ c a+ b+ c

i

We will talk more about dual codes and simplex codes in later classes.

Code Weight Distribution and Enumerator

The weight distribution consists of numbers Aw that count codewords

of weight w:

Aw =
��{c 2 C | wH(c) = w}

��.

error control coding 2

What is
P

w
Aw equal to?

The weight enumerator is the homogeneous, bivariate polynomial:

WC(x,y) =
nX

w=0
Awxwyn-w

.

For the [7, 4] Hamming code, we have WC(x,y) = x7 + 7x4y3 + 7x3y4 +

y7
. Note that A0 = 1 and A1 = · · · = Ad-1 = 0.

The distance distribution of an [n,k] code C consists of numbers B`

that cont pairs of codewords at distance `.

B` =
1
|C|

��{(c1, c2) 2 C⇥C | d(c1, c2) = `}
�� 0 6 ` 6 n.

The distance enumerator polynomial is

AC(x,y) =
nX

`=0

B`x
`yn-`

We can use the weight enumerator, e.g., to evaluate Pu, the probability

of undetected error on the BSC with the crossover probability p:

Pu =
nX

w>0
Awpw(1 - p)n-w

.

Note that when C is a linear code, than the distance and weight enu-

merators are identical.

Recall that the probability of error for an [n,k,d] code is

Pe =
nX

`=t+1

✓
n

`

◆
p`(1 - p)n-`

where t =

�
d- 1

2

⌫

The MacWilliams identity relates the weight enumerator of the code

and its dual:

W
C?(x,y) =

1
|C|

WC(y- x,y+ x).

Homework - due February 25

Evaluate the performance of the [7, 4] Hamming code on the BSC chan-

nel: Plot Pu and Pe as a function of the BSC crossover probability p

for p 2 [0, 0.5]

Error Control Coding 1
1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin
Lecture #7, February 19

This lecture is about the Reed-Solomon codes.

Finite Fields

A finite field or Galois field (so-named in honor of Évariste Galois) is a
field that contains a finite number of elements. So far we worked with
GF(2) (or F2, or the binary field). We can get GF(4) as an extension of
GF(2). To define field extensions, we use irreducible polynomials.

A polynomial is irreducible over F if its coefficients belong to F and
it cannot be factored into the product of two non-constant polynomials
with coefficients in F. Do you know an irreducible polynomial in R?

We can interpret GF(4) (or F22) as a quadratic extension2 of F2 by 2 Recall that C is the quadratic exten-
sion of R by the roots of the polyno-
mial x2 + 1.

the roots of the irreducible polynomial x2 + x+ 1. Note that if ↵ is a
root of this polynomial, so is 1+↵. Therefore, GF(4) consists of the set
{0, 1,↵, 1 +↵} and two operations:

+ 0 1 ↵ 1 +↵

0 0 1 ↵ 1 +↵

1 1 0 1 +↵ ↵

↵ ↵ 1 +↵ 0 1
1 +↵ 1 +↵ ↵ 1 0

· 0 1 ↵ 1 +↵

0 0 0 0 0
1 0 1 ↵ 1 +↵

↵ 0 ↵ 1 +↵ 1
1 +↵ 0 1 +↵ 1 ↵

A primitive element of a finite field GF(q) is a generator of the
multiplicative group of the field. Note that ↵

2 = 1 + ↵ and ↵
3 = 1.

Therefore, ↵ is the primitive element of GF(4).

Reed-Solomon Codes

Reed-Solomon codes are one of the most important family of codes
both in theory and in practice. They were introduced in

Reed, Irving S.; Solomon, Gustave (1960), SIAM 8 (2)
“Polynomial Codes over Certain Finite Fields”

error control coding 2

Definition – The Evaluation and the Generator Matrix View

There are many ways to define Reed-Solomon codes, and we will start
as follows:
RS[n,k]q ✓ Fn

q where q > n (we will use n = q- 1) is defined for a set
of points S = {↵1, . . . ,↵n} ✓ Fq as the following set of n-dimensional
vectors over Fq:

RS[n,k]q = {(a(↵1),a(↵2), . . . ,a(↵n)) 2 Fn |

a is a polynomial over Fq of degree < k} .

To encode data vector a = (a0,a1, . . . ,ak-1) 2 Fk
q, we take its symbols

to be the coefficients of the polynomial

a(x) = a0 + a1x+ · · ·+ ak-1x
k-1 2 Fq[x].

We then evaluate this polynomial at the points ↵1,↵2, . . . ,↵n to get the
codeword corresponding to a. Note that the i-th codeword symbol is
a(↵i).

Equivalently, to evaluate the polynomial a on the points ↵1, . . . ,↵n,
we multiply the message vector a by the following k⇥n-matrix G:

G =

2

6666664

1 . . . 1
↵1 . . . ↵n

↵
2
1 . . . ↵

2
n

...
. . .

...
↵
k-1
1 . . . ↵

k-1
n

3

7777775

Note that the matrix G is a generator matrix for RS[n,k]q, i.e., c = aG

=) Reed-Solomon codes are linear.

The Minimum Distance

A codeword in RS[n,k]q can have at most k - 1 zeros. Why? Thus
the minimum weight3 a codeword in RS[n,k]q can have is n - (k - 3 number of non-zero elements
1). Because RS codes are linear, the minimum distance is equal to
the minimum weight a codeword can have. Therefore, the minimum
distance of RS[n,k]q is at least n- k+ 1. On the other hand, by the
Singleton bound, we know that the minimum distance is at most n-

k+ 1. Therefore, the minimum distance is exactly equal to n- k+ 1,
and thus the RS codes are MDS, i.e., they achieve the Singleton bound.

Here is another way to show that the minim distance of RS codes
is equal to n- k+ 1. Consider a k⇥ k matrix V that consists of some
k columns of G, say i1, i2, . . . ik. Compute the determinant of V . Note
that V is a Vandermonde matrix. Its determinant is given by

Y

i`<im

(↵i` -↵im) 6= 0.

error control coding 3

Suppose that in the codeword c = a ·G some n-k symbols are erased.
We can still recover the data a because the remaining symbols of c are
related to data a by an invertible matrix.

Definition – The Parity Check Matrix View

Polynomial representations:

• Data word a = (a0,a1, . . . ,ak-1):

a(x) = a0 + a1x+ · · ·+ ak-1x
k-1

• Codeword c = (c0, c1, . . . , cn-1):

c(x) = c0 + c1x+ · · ·+ cn-1x
n-1

We can now define the RS[n,k]q as the set of all codewords whose
associate polynomials have degree at most n and are multiples of the
generator polynomial

g(x) = (x-↵
j0)(x-↵

1+j0) . . . (x-↵
n-k-1+j0), j0 > 1

where ↵ is a primitive element of Fq. What do we need j0 for?4 4 Choice of j0, and the encoding
method impacts the complexity of
the encoding circuitry.Why is this a parity-check point of view? Note that c(↵j0+i) = 0 for

i = 0, . . . ,n- k+ 1. Let j0 = 1 and consider:

H =

2

66664

1 ↵ ↵
2 . . . ↵

n-1

1 ↵
2 (↵2)2 . . . (↵2)n-1

...
. . .

...
1 ↵

n-k (↵n-k)2 . . . ↵
n-k)n-1

3

77775

Note that c(↵i+j0) = 0 for 0 6 i 6 n- k+ 1, hence the parity view.

Then cH
T = 0 . Here we see that a dual code of an MDS codes is an

MDS code.

Encoding

1. By multiplication c(x) = a(x) · g(x)

2. c(x) = x
n-k

a(x) + b(x)

where b(x) is the remainder resulting from dividing x
n-k

a(x) by
g(x).

Note that deg(b(x)) < deg(g(x)) = n- k.
Note that the codeword generated by the encoding method 2, consists
of data symbols and coefficients of b(x). Thus we have a systematic
code.

error control coding 4

Two Research Problems Related to MDS Codes

MDS Codes with Constrained Generator Matrices

1. Are there RS codes whose generator matrices have zeros at pre-
scribed places?

2. If there are, how large field do we need?

3. Can the zeros be anywhere? Example, a systematic MDS code?

The MDS Conjecture

The Main Conjecture on MDS Codes states that for every linear [n,k]q
MDS code, if k 6 q, then n 6 q+ 1, except when q is even and k = 3
or k = q- 1, in which cases n 6 q+ 2. This problem is a long standing
open problem, and is related to some problems in algebraic geometry.5 5 Problems of Segre

RS Codes in Action

NETWORK CODED MULTICAST

ERROR CONTROL CODING (ECE 548)

Rutgers, Spring 2019

Lecture #8, February 21

1 / 20

NETWORK MULTICAST – The Butterfly

S1 S2

A B

C

D

E

F

R1 R2

σ1 σ2

σ1

σ1 σ2

σ2σ1 + σ2

! Sources S1 and S2 produce bits σ1 and σ2.

! Each receiver needs bits from both sources.

! The edges have unit capacity.

Can both sources simulaneosly transmit to both reseivers?

Yes if nodes can XOR bits.

2 / 20

NETWORK MULTICAST MODEL

! Network is represented as a directed, acyclic graph.

! Edges have unit-capacity and parallel edges are allowed.

! There are h unit-rate information sources S1, . . . ,Sh.

! There are N receivers R1, . . . ,RN located at N distinct nodes.

Can all sources simultaneously transmit at full rate to all receivers?

3 / 20

NETWORK MULTICAST – Throughput

! Can all sources simultaneously transmit to receiver Rj?
Yes, if between the sources and the j-th receiver node

! the number of edges in the min-cut is h (or equivalently)
! there are h edge-disjoint paths (Si,Rj) for 1 " i " h.

[Ford, Fulkerson], [Elias, Feinstein, Shannon] ∼ 50s

! Can all sources simultaneously transmit to all receivers?

Yes, if in addition each node of G can re-encode information.

[Alshwede, Cai, Li, Yeung] ∼ 2000

4 / 20

A Network for Multicast

S1 S2

A B C

D E R2

FR1 G

H K R3

5/ 20

Three Unicasts in a Multicast Network

S1 S2

A B C

D E
R2

F
R1

G

H K
R3

σ1 σ2

S1 S2

A B C

D E
R2

F
R1

G

H K
R3

σ1 σ2

S1 S2

A B C

D E
R2

F
R1

G

H K
R3

σ1 σ2

6 / 20

UNDIRECTED GRAPHS

! The main theorem does not hold.

! Coding can at most double the throughput.

S

A B

C D

R1 R2

Original Graph

S

A B

C D

R1 R2

Paths to R1

S

A B

C D

R1 R2

Paths to R2

7/ 20

NETWORK MULTICAST – Linear Combining

S1 S2

A B

C

D

E

F

R1 R2

(a) Routing to R1

σ1 σ2

σ1

σ2

σ2

S1 S2

A B

C

D

E

F

R1 R2

(b) Routing to R2

σ1

σ2σ1

S1 S2

A B

C

D

E

F

R1 R2

(c) Network coding

σ1

σ1 σ2

σ2σ1 + σ2

8 / 20

Network Multicast Theorem

Conditions:

! Network is represented as a directed, acyclic graph.

! Edges have unit-capacity and parallel edges are allowed.

! There are h unit-rate information sources S1, . . . ,Sh.

! There are N receivers R1, . . . ,RN located at N distinct nodes.

! Between the sources and each receiver node,

! the number of edges in the min-cut is h (or equivalently)
! there are h edge-disjoint paths (Si,Rj) for 1 " i " h.

Claim: There exists a multicast transmission scheme of rate h.

Moreover, multicast at rate h

! cannot always be achieved by routing, but

! can be achieved by allowing the nodes to linearly combine

their inputs over a sufficiently large finite field.
9 / 20

Network Multicast – Linear Combining

! Source Si emits σi which is an element of some finite field.

! Edges carry linear combinations of their parent node inputs.

! Consequently,

edges carry linear combinations of source symbols σi.

Network Coding Multicast Problem:

How should nodes combine their inputs to ensure that any h edges

observed by a receiver carry independent combinations of σi-s?

10 / 20

Network Multicast – Example

S1 S2

A B C

D E R2

FR1 G

H K R3

11 / 20

Network Multicast – Example

S1 S2

A B C

D E
R2

F
R1

G

H K
R3

σ1 σ2

S1 S2

A B C

D E
R2

F
R1

G

H K
R3

σ1 σ2

S1 S2

A B C

D E
R2

F
R1

G

H K
R3

σ1 σ2

12 / 20

Network Multicas – Example

S1 S2

A B C

D E R2

FR1 G

H K R3

σ1 σ2

σ1 σ2

σ2α1σ1+α2σ2

σ1

α3σ1+α4(α1σ1+α2σ2)
[

1 0

α3 + α1α4 α2α4

]

[

0 1

α1 α2

]

[

α1 α2

α3 + α1α4 α2α4

]

13 / 20

Network Multicast – Code Design

! Edges carry linear combinations of their parent node inputs;

{αk} are the coefficients used in these linear combinations.

! ρji is the symbol on the last edge of the path (Si,Rj) ⇒
Receiver j has to solve the following system of equations:

⎡

⎢

⎢

⎣

ρj1
...

ρjh

⎤

⎥

⎥

⎦

= Cj

⎡

⎢

⎢

⎣

σ1
...

σh

⎤

⎥

⎥

⎦

where the elements of matrix Cj are polynomials in {αk}.

The Code Design Problem:

Select {αk} so that all matrices C1 . . .CN are full rank.

14 / 20

Network Multicast – Code Existence

! The goal is to select {αk} so that C1 . . .CN are full rank.

! Equivalently, the goal is to select {αk} so that

f({αk}) # det(C1) · · · det(CN) ≠ 0.

Can such {αk} be found?

RLNC [Ho et al.]

Yes, by selecting {αk} uniformly at random from a “large filed”,

we will have the polynomial f({αk}) ≠ 0 with “high probability”.

LIF [Jaggi et al.]

Yes, {αk} can be selected form Fq where q > N.

But, we don’t know of any networks for which q > O(
√
N) is required.

15 / 20

THE OPERATING FIELD SIZE

! Why not any finite field?

! Polynomial

x(x+ 1) + x+ x2

is identically equal to zero over any field with characteristic 2.

! A polynomial not identically equal to zero over Fq

can evaluate to zero on all elements of Fq.

! Consider polynomial x(x+ 1) over F2

16 / 20

Combination Network B(h,m)
A Popular Network With a Small-Alphabt Code

h h

S1 S2 Sh· · ·

σ1 . . .σh

R1
R(mh)

· · ·

· · · · · ·

y1 y2 ym−1 ym

B(h,m) has

! h information sources,

!
(

m
h

)

receivers, and

! m bottlenecks.

Design a rate-h multicast!

Map {σj} to {yk} by an [m,h] Reed-Solomon code.

But, what if fewer than h sources are available at the bottlenecks?

17 / 20

A Distributed Combination Network
Fewer than h sources are available at the bottlenecks

S1 S2 S3

R1 R81

There are

! 3 information sources,

! 9 bottlenecks, and

!
(

9
3

)

− 3 receivers.

Design a rate-3 multicast!

Only information that is locally available can be combined.

18 / 20

Non-Monotonicity
There may be a solution over Fq0 but not over Fq for some q > q0

Coding vectors for our example network:
⎡

⎢

⎣

a1 a2 a3 b1 b2 b3 0 0 0

c1 c2 c3 0 0 0 d1 d2 d3

︸ ︷︷ ︸

v1

0 0 0
︸ ︷︷ ︸

v2

e1 e2 e3
︸ ︷︷ ︸

v3

f1 f2 f3

⎤

⎥

⎦

All 3× 3 sub-matrices, except v1, v2, v3, should be non-singular.

In which fields Fq does a solution exist?

! No solution exists when q < 7.

! A solution exists for all q $ 9.

! A solution exists for q = 7

! No solution exists for q = 8.
19 / 20

What Would We Like To Do?
... short of solving the problem ...

Find relations (equivalences) with other problems, e.g.,

Something old :
Three problems of Segre in PG(h− 1,q)

1. What is the size g(h,q) of the maximal arc,

and which arcs have g(h,q) points?

2. For which q and h < q are all arcs with q+ 1 points equivalent?

3. What are the sizes of the complete arcs,

and what is the size of the second largest complete arc?

Something new :

constrained MDS codes, codes with locality constraints,

minimal multicast graph topologies vs. geometry of arcs.

20 / 20

Error Control Coding
1

1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin

Lecture #9, February 26

This lecture covers several fundamental urns and balls problems we use
in coding theory.

Urns and balls models refer to basic probabilistic experiments in which
balls are thrown randomly into urns, and we are interested in various
patterns of urn occupancy (e.g., the number of empty urns). These
models are central in many disciplines such as combinatorics, statis-
tics, analysis of algorithms, and statistical physics. Some modern net-
work communications scenarios give rise to problems that are related
to the classical urns and balls questions. Some new models and prob-
lems emerge as well, because information packets can be processed in
a way their physical counterparts, urns and balls, cannot.

Urns&Balls and Coupons – Classical Probability Models

... any problem of probability appears

comparable to a suitable problem about

bags containing balls, and any random

mass phenomenon appears as similar in

certain essential respects to successive

drawings of balls from a system of suit-

ably combined bags.

Polya in “Mathematics and Plausible

Reasoning” 1954.

Two equivalent experiments:

1. b balls are thrown into n urns, e.g., b = 140 and n = 365.

2. b objects are drawn with replacement from a set of size n.

Questions (many can be asked):

How many draws (balls) it takes for some event E to occur, e.g.,

• Eb: a coupon (any) gets drawn twice birthday problem
(an urn is hit twice)

• Ec: each coupon gets drawn at least once coupon collection
(all urns are nonempty)

Estimates (some are known):

• For Eb, we need O(
p
n) draws on average.

• For Ec, we need O(n logn) draws on average.

Information Source

• produces sequences of letters in a finite alphabet U

• outputs each letter independently of the rest

• probability of letter x is Px

error control coding 2

• e.g., coin tossing with U = {H, T }, PH = PT = 1/2

Each source sequence of length b corresponds to

• an outcome of throwing b balls into |U| urns, or

• b draws, with replacement, form the set U of coupons.

urn ID

di
st

rib
ut

io
n

of
 1

2
ba

lls

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

urn ID

di
st

rib
ut

io
n

of
 1

00
 b

al
ls

0 20 40 60 80 100

0
1

2
3

4
5

urn ID

di
st

rib
ut

io
n

of
 5

18
 b

al
ls

0 20 40 60 80 100

0
2

4
6

8
10

12

urn ID

di
st

rib
ut

io
n

of
 1

00
00

 b
al

ls

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0

How do b Balls Get Distributed Among n Urns?

of Urns n vs. # of Balls b MATTERS

Suppose the number of urns n is given, e.g., n = 1000.

Which values of b are of interest?

b = 0 b!1

INFORMATION THEORY

p
n

birthday point

n

coding point

n logn

coupon collector’s point

�!

Time to Collect All Coupons

• The first draw brings a new coupon for sure.

• Suppose we have collected r different coupons. Then

– a draw brings a new coupon with probability pr = (n- r)/n,

– the average number of draws to get a new coupon is

1X

`=1

` · pr(1 - pr)
`-1 =

1
pr

=
n

n- r
.

• The average number of draws to get all coupons is

n-1X

r=0

1
pr

= n

⇣ 1
n
+

1
n- 1

+ · · ·+ 1
⌘
= nHn

Hn = logn+ �+O(n-1) is the harmonic number.
� = 0.5772156649 is the Euler’s constant.

error control coding 3

Average Time to Collect Some Coupons

P
k-1
r=0

n

n-r
= n(Hn -Hn-k) for ANY k Coupons:

Once r different coupons have been collected, it takes n/(n - r) draws
on average to get one of the unseen n- r coupons.

P
k-1
r=0

n

k-r
= nHk for SPECIFIC k coupons:

Once r different coupons have been collected, it takes n/(k - r) draws
on average to get one of the remaining k- r desired coupons.

How do b Balls Get Distributed Among n Urns?

Let µr be the number of urns containing r balls. Are µr independent?
Note that

P
n

r=1 µr = n and
P

n

r=1 r · µr = b.
We can compute E(µr):

• ✓
`
r 2 {0, 1} indicates if the `-th urn has r balls or not

• µr =
P

n

`=1 ✓
`
r)

E(µr) = E

⌦ nX

`=1

✓
`
r

↵
=

nX

`=1

P(✓`r = 1) = n

✓
b

r

◆⇣ 1
n

⌘r⇣
1 -

1
n

⌘b-r

b draws will, on average, bring n- E(µ0) different coupons,

n- E(µ0) = n
⇥
1 - (1 - 1/n)b

⇤
' n

�
1 - e

-b/n
�
.

A Brotherhood Problem

Collecting all n coupons with a little sister:

• The collector has a little sister to whom he gives his duplicates.

• When he collects all coupons, how many does she miss on average?

After b draws, the expected number of coupons with r copies is

E(µr) = n

✓
b

r

◆⇣ 1
n

⌘r⇣
1 -

1
n

⌘b-r

We can answer the following related question:

After b = nHn draws, how large are the siblings’ collections on
average?

• The brother’s collection size is on average n- E(µ0) ⇠ n.

• The sister’s collection size is on average n- E(µ1) ⇠ n-Hn.

How many additional draws will complete the sister’s collection?

RAPTOR CODES

From a Math Idea to LTE eMBMS

ERROR CONTROL CODING (ECE 548)

Rutgers, Spring 2019

Lecture #10, February 28, 2019

1 / 17

The plan is to ...

1 introduce LT codes and Raptor codes

2 provide insights into their design

3 address some common misconceptions

2 / 17

The Ideal Abstract Properties of Codes

1 The encoder should be able to generate, from k source symbols,

as many encoded symbols as required for decoding. rateless

2 ANY k encoded symbols should be su�cient for decoding.

3 Encoding/Decoding computation time should be linear in k.

3 / 17

Raptor Codes are Good for MBMS Because

They enable reliable communications over multiple, unknown channels:

1 They are rateless) their redundancy can be flexibly adapted to

changing channel/network conditions of e.g. as in mobile wireless.

2 In the case of multiple erasure channels as in Multimedia

Broadcast/Multicast Service (MBMS), they can be made to

universally achieve the channel capacity for all erasure rates.

They are simple to encode and decode.

How do Raptor Codes achieve that, and can other codes perform as well?

4 / 17

Raptor Codes are Concatenated Codes

In the beginning, there were LT codes ...

5 / 17

LT Codes – Rateless Encoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

x0 x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3 x2 + x3 + x4 + x5

x1 + x2 + x3 + x4 + x5

When can we hope to be able to recover the x values from y values?

face

⌦ .05 .5 .1 .05 .25 .05

6 / 17

LT Codes – Rateless Encoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

x0 x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3 x2 + x3 + x4 + x5

x1 + x2 + x3 + x4 + x5

When can we hope to be able to recover the x values from y values?

face

⌦ .05 .5 .1 .05 .25 .05

6 / 17

LT Codes – Rateless Encoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

x0 x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3 x2 + x3 + x4 + x5

x1 + x2 + x3 + x4 + x5

When can we hope to be able to recover the x values from y values?

face

⌦ .05 .5 .1 .05 .25 .05

6 / 17

LT Codes – Rateless Encoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

x0

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3 x2 + x3 + x4 + x5

x1 + x2 + x3 + x4 + x5

When can we hope to be able to recover the x values from y values?

face

⌦ .05 .5 .1 .05 .25 .05

6 / 17

LT Codes – Rateless Encoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

x0

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3 x2 + x3 + x4 + x5

x1 + x2 + x3 + x4 + x5

When can we hope to be able to recover the x values from y values?

face

⌦ .05 .5 .1 .05 .25 .05

6 / 17

LT Codes – Rateless Encoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

x0 x0 + x1

x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3 x2 + x3 + x4 + x5

x1 + x2 + x3 + x4 + x5

When can we hope to be able to recover the x values from y values?

face

⌦ .05 .5 .1 .05 .25 .05

6 / 17

LT Codes – Rateless Encoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

x0 x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3 x2 + x3 + x4 + x5

x1 + x2 + x3 + x4 + x5

When can we hope to be able to recover the x values from y values?

face

⌦ .05 .5 .1 .05 .25 .05

6 / 17

LT Codes – Rateless Encoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

x0 x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3 x2 + x3 + x4 + x5

x1 + x2 + x3 + x4 + x5

When can we hope to be able to recover the x values from y values?

face

⌦ .05 .5 .1 .05 .25 .05

6 / 17

Linear (Rateless) Codes

Data symbols {x1, . . . , xk} are mapped into code symbols {yi}
1
1 .

yi are linear combinations of {x1, . . . , xk}, xj,yi 2 Fq:

yi = ↵
i
1x1 + · · ·+ ↵

i
kxk, ↵

i
j 2 Fq

For random codes, ↵i are chosen uniformly at random.

For each yi in LT codes,

1 degree d is picked (non-uniformly) at random from {1, . . . ,k},

according to some degree distribution {p1, . . . ,pk};
2 only d of {↵i

1, . . . ,↵
i
k} are non-zero; picked uniformly at random.

3 the values for the non-zero ↵i are chosen uniformly at random.

To design an LT code means to pick the degree distribution.

What are the unique advantages of LT Codes?

7 / 17

LT Codes – Simple (Belief Propagation) Decoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

X

x0

X

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3 (((((((
x2 + x3 + x4 + x5

(((((((((
x1 + x2 + x3 + x4 + x5

X X z z X X

?

X

?

X

?

X

?

X

?

X

?

X

Complexity is determined by the number of edges in the decoding graph.

face

⌦ .05 .5 .1 .05 .25 .05

8 / 17

LT Codes – Simple (Belief Propagation) Decoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

X

x0

X

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3

(((((((
x2 + x3 + x4 + x5

(((((((((
x1 + x2 + x3 + x4 + x5

X X z z X X

?

X

?

X

?

X

?

X

?

X

?

X

Complexity is determined by the number of edges in the decoding graph.

face

⌦ .05 .5 .1 .05 .25 .05

8 / 17

LT Codes – Simple (Belief Propagation) Decoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

X

x0

X

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3

(((((((
x2 + x3 + x4 + x5

(((((((((
x1 + x2 + x3 + x4 + x5

X X z z X X

?

X ?

X

?

X

?

X

?

X

?

X

Complexity is determined by the number of edges in the decoding graph.

face

⌦ .05 .5 .1 .05 .25 .05

8 / 17

LT Codes – Simple (Belief Propagation) Decoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

X

x0

X

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3

(((((((
x2 + x3 + x4 + x5

(((((((((
x1 + x2 + x3 + x4 + x5

X X z z X X

?

X ?

X

?

X

?

X

?

X

?

X

Complexity is determined by the number of edges in the decoding graph.

face

⌦ .05 .5 .1 .05 .25 .05

8 / 17

LT Codes – Simple (Belief Propagation) Decoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

X

x0

X

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3

(((((((
x2 + x3 + x4 + x5

(((((((((
x1 + x2 + x3 + x4 + x5

X X z z X X

?

X

?

X ?

X

?

X

?

X

?

X

Complexity is determined by the number of edges in the decoding graph.

face

⌦ .05 .5 .1 .05 .25 .05

8 / 17

LT Codes – Simple (Belief Propagation) Decoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

X

x0

X

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3

(((((((
x2 + x3 + x4 + x5

(((((((((
x1 + x2 + x3 + x4 + x5

X X z z X X

?

X

?

X ?

X

?

X

?

X

?

X

Complexity is determined by the number of edges in the decoding graph.

face

⌦ .05 .5 .1 .05 .25 .05

8 / 17

LT Codes – Simple (Belief Propagation) Decoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

X

x0

X

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3

(((((((
x2 + x3 + x4 + x5

(((((((((
x1 + x2 + x3 + x4 + x5

X X z z X X

?

X

?

X

?

X ?

X

?

X

?

X

Complexity is determined by the number of edges in the decoding graph.

face

⌦ .05 .5 .1 .05 .25 .05

8 / 17

LT Codes – Simple (Belief Propagation) Decoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

X

x0

X

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3

(((((((
x2 + x3 + x4 + x5

(((((((((
x1 + x2 + x3 + x4 + x5

X X z z X X

?

X

?

X

?

X ?

X

?

X

?

X

Complexity is determined by the number of edges in the decoding graph.

face

⌦ .05 .5 .1 .05 .25 .05

8 / 17

LT Codes – Simple (Belief Propagation) Decoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

X

x0

X

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3

(((((((
x2 + x3 + x4 + x5

(((((((((
x1 + x2 + x3 + x4 + x5

X X z z X X

?

X

?

X

?

X

?

X ?

X

?

X

Complexity is determined by the number of edges in the decoding graph.

face

⌦ .05 .5 .1 .05 .25 .05

8 / 17

LT Codes – Simple (Belief Propagation) Decoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

X

x0

X

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3

(((((((
x2 + x3 + x4 + x5

(((((((((
x1 + x2 + x3 + x4 + x5

X X z z X X

?

X

?

X

?

X

?

X ?

X

?

X

Complexity is determined by the number of edges in the decoding graph.

face

⌦ .05 .5 .1 .05 .25 .05

8 / 17

LT Codes – Simple (Belief Propagation) Decoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

X

x0

X

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3

(((((((
x2 + x3 + x4 + x5

(((((((((
x1 + x2 + x3 + x4 + x5

X X z z X X

?

X

?

X

?

X

?

X

?

X ?

X

Complexity is determined by the number of edges in the decoding graph.

face

⌦ .05 .5 .1 .05 .25 .05

8 / 17

LT Codes – Simple (Belief Propagation) Decoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

X

x0

X

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3

(((((((
x2 + x3 + x4 + x5

(((((((((
x1 + x2 + x3 + x4 + x5

X X z z X X

?

X

?

X

?

X

?

X

?

X ?

X

Complexity is determined by the number of edges in the decoding graph.

face

⌦ .05 .5 .1 .05 .25 .05

8 / 17

LT Codes – Simple (Belief Propagation) Decoding

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5

X

x0

X

x0 + x1 x1 + x2 x3 + x5 x4 + x5

x1 + x2 + x3

(((((((
x2 + x3 + x4 + x5

(((((((((
x1 + x2 + x3 + x4 + x5

X X z z X X

?

X

?

X

?

X

?

X

?

X

?

X

Complexity is determined by the number of edges in the decoding graph.

face

⌦ .05 .5 .1 .05 .25 .05

8 / 17

LT Codes Design Objectives

Data symbols {x1, . . . , xk} are mapped into code symbols {yi}
1
1 .

yi are linear combinations of {x1, . . . , xk}, xj,yi 2 Fq:

yi = ↵
i
1x1 + · · ·+ ↵

i
kxk, ↵

i
j 2 Fq

For each yi in LT codes,

1 degree d is picked (non-uniformly) at random from {1, . . . ,k},

according to some degree distribution {p1, . . . ,pk};
2 only d of {↵i

1, . . . ,↵
i
k} are non-zero; picked uniformly at random.

3 the values for the non-zero ↵i are chosen uniformly at random.

The distribution should enable simple linear time decoding

of {x1, . . . , xk} as soon as any k(1+ ✏) of y-s are received.

Can such a degree distribution be found?

9 / 17

Can LT Codes Meet the Ideal Design Objectives?

The Ideal Abstract Properties of Codes:

1 The encoder should be able to generate, from k source symbols,

as many encoded symbols as required for decoding. rateless

2 ANY k encoded symbols should be su�cient for decoding.

3 Encoding/Decoding computation time should be linear in k.

vs.

LT Codes Design

1 Data symbols {x1, . . . , xk} are mapped into code symbols {yi}
1
1 by

an algorithm using a degree (probability) distribution {p1, . . . ,pk}.

2 The distribution should enable simple linear time decoding

of {x1, . . . , xk} as soon as any k(1+ ✏) of y-s are received.

10 / 17

Can Complexity be Linear ...

if data symbols are recoverable from any k(1+ ✏) code symbols?

Complexity is determined by the number of edges incident to y’s

but only for BP decoding; otherwise a matrix inversion is required.

Data symbols {x1, . . . , xk} are mapped into code symbols {yi}
1
1 by

an algorithm using a degree (probability) distribution {p1, . . . ,pk}.

We may be able to recover {x1, . . . , xk} from some n y’s only if

1 n > k , more equations than unknowns
2 each x is in at least one equation whp

, here are O(k log k) edges incident to y’s

What else is required for decoding?

11 / 17

A Polya-Like Urn Model & Coding Overhead

An urn contains k balls that are numbered from 1 to k.

A multiple-ball draw from the urn is carried out in two stages:

1 Number i of balls to be drawn is selected with probability pi.

2 i balls are drawn without replacements, their numbers are recorded,

and the balls are then returned to the urn.

The number of draws necessary to see all balls is, on average,

1

a1
kHk +

a1 - a2

2a2
1

(Hk - 1),

where ai is the i-th moment of {pi}
k
i=1 and Hk =

kX

`=1

1

`
= O(log k).

12 / 17

What About Coding Overhead?

When {x1, . . . , xk} are mapped into code symbols {yi}
1
1

by using the following, Ideal Soliton, degree distribution:

pd =

�
1/k, d = 1,

1/[d(d- 1)], d = 2, 3, . . . ,k,

the variance in the decoding process will cause BP decoder to fail.

More robust distributions can guarantee a BP decoding failure rate

of at most �, when k(1+ log2(k/�/
p
k) or more y’s are received.

✏

throughput

BEC capacity.

1

1

log2 k/
p
k overhead

LT (length 104, BP).

13 / 17

The Raptor (Partial) Remedy

Soliton based LT code with BP decoding failure probability � has

1 decoding complexity O(k log(k/�))

2 average overhead log2(k/�)/
p
k

Q: Can we recover all data in linear time from O(k) code symbols?

A: No, under our probabilistic model, but we can recover a large fraction.

Raptor codes are concatenated codes where

data {x1, . . . , xk} are first pre-coded into {z1, . . . , zm}, m > k, then

precode symbols {z1, . . . , zm} are mapped into code symbols {yi}
1
1

We don’t have to recover all z’s from O(k) received y’s BUT

just enough of them to allow us to decode all {x1, . . . , xk}.

14 / 17

The Coupon Collection Problem

An urn contains k balls that are numbered from 1 to k.

Balls are drawn one at the time with replacement.

The average number of draws

reacquired to see r di↵erent balls:

r-1X

`=0

k

k- `
= k(Hk -Hk-r)

⇠ k log
k

k- r

for large k and k- r.

0 200 400 600 800 1000

0
20

00
40

00
60

00

r (# of seen balls from the 1000 in the urn)

av
er

ag
e

nu
m

be
r o

f r
eq

ui
re

d
dr

aw
s

15 / 17

What is Ratelessness and is it Overrated?

Ratelessness matters and means di↵erent things to di↵erent people:

encoder can produce potentially infinite stream of symbols

each code symbol is statistically identical

Can fixed rate codes be made rateless?

✏

throughput

BEC capacity.

1

1

LDPC (rate R, BP threshold ✏
⇤).

✏
⇤

R

✏
⇤

R

R/(1- ✏
⇤)

✏
⇤

R

R/(1- ✏
⇤)

p
✏⇤

R/2

LT (length 104, BP).

16 / 17

The Unbearable Ratelessness of Coding

Two eMBMS Phases: Multicast Delivery & Unicast Repair:

17 / 17

Error Control Coding 1
1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin
Lecture #11, March 5

This lecture is concerned with random, linear (network) coding.

Collecting Numbers

You need to collect n numbers x1, . . . , xn in finite field Fq by
drawing random linear combinations of the numbers (coding):

⇢ = ↵1x1 + · · ·+↵nxn, ↵i 2 Fq

(the coefficients ↵i and the result of combining will be revealed).
How many such draws do you need to make?2 2 How many draws does it take to

get n linearly independent equa-
tions?Rate of Collecting Coupons vs. Numbers

Depending whether or not we use coding, collection size is either

• the number of collected distinct pieces w/0 coding, or

• the number of collected linearly independent equations w/ coding.

Suppose the collection size is r < n. Then a random draw will increase
the collection size with probability

• 1 - r/n without coding,

• 1 - qr

qn > 1 - 1
q with coding.

●●

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

collection size

pr
ob

ab
ilit

y
of

 in
cr

ea
si

ng
 th

e
co

lle
ct

io
n

si
ze

●

with coding
w/o coding

N=1000, q=2Time to Collecting Numbers

Once ` linearly independent combinations have been collected,

• a draw brings a new linearly independent equation with probability

p` = (qn - q
`)/qn.

• the average number of draws that have to be made to get a new
linearly independent equation is equal to 1/p` = q

n
/(qn - q

`)

The average number of draws to get r linearly independent equations
is

r-1X

`=0

q
n

qn - q`
< r · q

q- 1

error control coding 2

Time to Collect Coupons vs. Numbers

The average number of draws necessary for collection size r is

• without coding
r-1X

`=0

n

n- `
= n(Hn -Hn-r)

• with coding (see homework)

●●●
●●

●●●
●●

●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

0 200 400 600 800 1000

0
20

00
40

00
60

00

collection size

av
er

ag
e

nu
m

be
r o

f r
eq

ui
re

d
dr

aw
s

●

with coding
w/o coding

N=1000, q=2

To collect n numbers, we will have to, on average, draw about

• n logn times if we use the random collection strategy,

• n times if we use coding.

Coding within Generations

x1, . . . , xn=mh are partitioned into m sets, generations, of size h:

x1, . . . , xh xh+1, . . . , x2h . . . x(m-1)h+1, . . . , xmh

In each draw we follow a two stage collection process:

1. a generation chosen uniformly at random (with replacement)

2. numbers in the chosen generation are linearly combined

Implications:

1. we collect generations as coupons, and code within generations)

2. we need to draw each generation at least h times to decode all data

Generations – Throughput/Complexity Tradeoff

Tradeoff: the collector will

• have to solve h⇥ h systems of equations rather than n⇥n

• collect data at a slower pace

If the generation size is h, we would like to know

• How many draws will it take to acquire the data?

• What are other advantages/disadvantages of having generations?

error control coding 3

The Double Dixie Cup Problem

(aka Collector’s Brotherhood Problem) is concerned with T
h
m:

number of draws needed to acquire h complete sets of all m coupons.

E
⇥
T
h
m

⇤
=n

Z1

0

⇥
1 - (1 - Sh(x)e

-x)m
⇤
dx

Sh(x) = 1 +
x

1!
+

x
2

2!
+ · · ·+ x

h-1

(h- 1)!
(h > 1)

Asymptotically,3 3 We have shown this for h = 2

E
⇥
T
h
m

⇤
= m logm+ (h- 1)m log logm+Chm+ o(m) for large m

(Ch = �- log(h- 1)!, � is Euler’s constant)E
⇥
T
h
m

⇤

! hm for large h

(studied by Newman & Shepp ’60, Erdös & Rényi ’61, Flatto ’82)

Generations – Throughput/Complexity Tradeoff

Data x1, . . . , xn=mh are partitioned into m generations of size h. With
generation size h, we need

• O(h3) operations in Fq for coding,

and for small h and large n, we need

• n
h

⌦
O
�
log n

h

�
+ (h- 1) log

⇥
log

�
n
h (1 + o(1))

�⇤↵

draws to collect all data.

● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
20

00
40

00
60

00
80

00
10

00
0

generation size

ex
pe

ct
ed

 n
um

be
r o

f d
ra

w
s

fo
r c

om
pl

et
e

de
co

di
ng

N=1000 ~
nu

m
be

r o
f o

pe
ra

tio
ns

 in
 F

q

Generations - Computation/Tracking Cost Tradeoff

In P2P networks, to track a peer collection, without coding, we store a
string of n bits; the i-th bit is 1 if the peer has data piece i. To track
a peer collection, with coding over all data, we store the number of
independent combinations in log2(n+ 1) bits.

With generation size h, we need

• O(h3) operations in Fq for coding,

and

• log2(h+ 1) bits to track the collection within each generation

• (n/h) log2(h+ 1) bits in total.

● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0
10

00

generation size

of

 b
its

 p
er

 p
ee

r r
eq

ui
re

d
fo

r c
on

te
nt

 tr
ac

ki
ng

~
nu

m
be

r o
f o

pe
ra

tio
ns

 in
 F

q

N=1000

error control coding 4

Overhead per Generation

• Set of 1000 packets is partitioned into 40 generations of size 25.

• How do n random draws get distributed over the generations?

• Can the “lucky” generations help the “unlucky”?

generation ID

di
st

rib
ut

io
n

of
 1

60
0

dr
aw

s

0 10 20 30 40

0
10

20
30

40
50

generation ID

di
st

rib
ut

io
n

of
 1

20
0

dr
aw

s

0 10 20 30 40

0
10

20
30

40

Overlapping Generations

Overlapping generations of F = {x1, . . . , xmh} are formed in two steps:

1. F is partitioned into base generations Bi, i = 1, . . . ,m, of size h.

2. ` randomly selected elements of F \Bi are added to Bi, giving Gi.

At the moment the first generation, say Gj, can be decoded,

• it must have collected h+ ` linearly independent coded packets,

• the other generations’ still require innovative packets, BUT,
their requirements get reduced because of their overlaps with Gi

How does random coding over generations compare to LT codes?

Homework - due March 12 - strict deadline

• You need to collect k numbers x1, . . . , xk in finite field Fq by draw-
ing random linear combinations of the numbers (random coding):

⇢ = ↵1x1 + · · ·+↵kxk, ↵i 2 Fq

(the coefficients ↵i and the result of combining will be revealed).
How many draws does it take on average to get n linearly indepen-
dent equations?

• Consider a set of m vectors in Fn
q whose entries are chosen uni-

formly at random from Fq, where n < m. Find the probability of
having n linearly independent vectors in the set. Hint: Arrange the
vectors in a matrix and consider its rank.

Error Control Coding
1

1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin

Lecture #12, March 7

This lecture introduces LDPC codes.

Binary Low Density Parity Check (LDPC) Codes

Definition

Generally speaking, a linear code defined by its parity check matrix H

is an LDPC2 code if the percentage of 1’s in H is low, i.e., H is sparse 2 LDPC codes were invented by
Robert Gallager in his PhD thesis in
1960. Soon after that, they were for-
gotten, and then reinvented several
times for the next 30 years.

(low-density).
We can represent the parity check matrix H of a linear code by a

graph H in the following way. H has two disjoint sets of vertices re-
ferred to as variable nodes and check nodes. There are n variable nodes
corresponding to the columns in H and r check nodes correspond-
ing to the rows in H. If the element at position (i, j) of H is one, then
there is an edge in H between the i-th check and the j-th variable node.
Note that the only edges in H are hose that connect variable and check
nodes, and thus H is a bipartite graph. Note that if H is sparse, then
H is sparse. H is often referred as the Tanner graph of the code.

Note that we can define the code by H alone as the set of all length-n
binary sequences on the variable nodes such that for each check node,
the sum of the settings of the adjacent variable nodes is zero. If in the
Tanner graph, every variable node has degree ` and every check node
has degree m, we say that the codes is (`,m)-biregular.

For irregular codes, some fraction �d of variable node has degree d

and some fraction ⇢d of check nodes has degree d. These codes are
characterized by their variable and check degree distribution generat-
ing polynomials �(x) and ⇢(x):

�(x) =
X

d

�dx
d-1

⇢(x) =
X

d

⇢dx
d-1.

error control coding 2

Decoding of Binary LDPC Codes on the on the Erasure Channel

Assume that all-zero codeword was sent, and some bits got erased.

Q: When do we know the value of the variable node?

A: When

1. it is not erased
OR

2. it is connected to a check node whose all other variable nodes
neighbors are not erased.

A Message Passing Algorithm

Round v: Each variable node passes a message to all its adjacent check
nodes, 1 if the corresponding bit is not erased and 0 if it is.3 3 Note that the variable node’s mes-

sage reflects its certainty about its
bit value.

Round cv: Check node c passes a message to an erased adjacent vari-
able node v, 1 if all the variable nodes incident to c except v are not
erased. (Note that the message reflects how certain c is about v.)

Round vc: Variable node v passes a message to an adjacent check node
c, 1 if in the previous round v received 1 from at least one of its
adjacent check nodes other than c.

We iterate between these two rounds. The hope is that the number of
0 (i.e., uncertainty) messages goes down in each iteration

Another Algorithm

It is helpful to recall the algorithm we used for LT codes. However,
there, we had data-bit and code-bit nodes, whereas here, we have vari-
able (code-bit) and check nodes (equations). Note that the algorithm
we described in the previous section is equivalent to the following:|

1. Initialize the values of all the check nodes to zero. initialization

2. For all variable nodes v, if the value is received (its bit not erased),
then add its value to the values of all adjacent check nodes and
remove v together with all edges emanating from it from the graph.
 from received variables to checks

3. If there is a check node c of degree one, substitute its value into
the value of its unique neighbor among the variable nodes, add that
value into the values of all adjacent check nodes and remove the
variable nodes and all edges emanating from it from the graph.
from checks to variables and back

error control coding 3

Observations:

1. Decoding complexity is proportional to the number of edges in the
graph.

2. There is no guarantee that the algorithm can decode all variable
nodes.

Performance Analysis

We will use the following notation:

pi the probability that the messages passed from variable nodes to
check nodes at round i of the algorithm is 0.

qi the probability that the message passed from check nodes to vari-
able nodes at round i of the algorithm is 0.

Note that for successful decoding, we need pi to decrease with i. Ob-
serve the following:

• At round i+ 1, a variable node v will send message 0 to check node
c iff 1) v was erased and 2) all the messages that v received at round
i from the neighboring check nodes other than c were 0. Therefore,
for a variable node of degree d`, we have

pi+1 = ✏q
d`-1
i .

• The check node c passes a message 1 to the variable node v iff all
the neighboring variable nodes except for v send a message 1 to c

in the previous round. Therefore, for a check node of degree dr, we
have

qi = 1 - (1 - pi)
dr-1

Note that these recursions are conditioned on the variable and check
node degrees. Recall the degree distribution generating polynomials
�(x) and ⇢(x):

�(x) =
X

d`

�d`
x
d`-1

⇢(x) =
X

d

⇢dx
d-1.

By the formula for the total probability, we get

pi+1 =
X

d`

�d`
✏

⇣X

dr

⇢dr

�
1 - (1 - pi)

dr-1�
⌘d`-1

= ✏

X

d`

�d`

⇣
1 -

X

dr

⇢dr(1 - pi)
dr-1

⌘d`-1

= ✏�(1 - ⇢(1 - pi))

error control coding 4

Therefore, for successful decoding, we need

✏�
�
1 - ⇢(1 - x)

�
6 x for 0 < x < ✏. (1)

This condition can be used to calculate the maximal fraction of era-
sures a random LDPC code with given degree distributions can correct
using the simple decoding algorithm.

Homework - due April 2

Consider a random Tanner graph in which each variable node has
degree 3, and each check node has degree 6.

1. How are such graphs called? What are �(x) and ⇢(x)?

2. Find the maximum fraction of erasures ✏ that the message passing
decoding algorithm can recover

(a) from the successful decoding condition (1).

(b) by simulating the decoder on many large (3; 6)-biregular ran-
dom graphs.

3. Compare the performance of the two algorithms.

Error Control Coding
1

1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin

Lecture #13, March 12
This lecture talks about the Hadamard matrices and two important classes

of codes based on these matrices.

Hadamard Matrices

Hadamard Matrices were introduced by Jacques Hadamard in 1893,

and have received much attention in various fields. However, the ques-

tion of existence has not been fully answered.

Definition and Properties

A Hadamard matrix is a square matrix whose entries are either 1 or

-1 and whose rows are pairwise orthogonal over the field of real num-

bers.

=)

• Each row-vector has length (Euclidean norm)
p
n,

• det(H) = ±n
n
2

(Proof: HH
T = nIn =) det(HH

T) = n
n =) det(H) = ±n

n
2 .)

The order of a Hadamard matrix must be 2 or a multiple of 4, and the

Hadamard conjecture proposes that a Hadamard matrix of order 4m
exists for all positive integers m.

Let A be an m⇥ n matrix and B a p⇥ q matrix. Then the Kronecker

product A ⌦ B is the mp⇥nq matrix

A ⌦ B =

2

664

a11B · · · a1nB
.
.
.

. . .
.
.
.

am1B · · · amnB

3

775 .

Let A and C be n⇥n matrices and B and D m⇥m matrices. Then

(A ⌦ B) · (C ⌦ D) = AC ⌦ BD.

Therefore, if Hn and Hm are Hadamard matrices of respective orders

n and m, then Hn ⌦Hm is a Hadamard matrix of order nm.

Sylvester Construction

Hadamard matrices of order 2k for every positive integer k, can be

constructed as follows:

H2 =

"
1 1
1 -1

#

and H2k =

"
H2k-1 H2k-1

H2k-1 -H2k-1

#

= H2 ⌦H2k-1 for k > 2.

error control coding 2

=) There exists a Hadamard matrix of order 2k for all k.

These Hadamard matrices are sometimes called Sylvester matrices.

Recall that the conjecture is that for all k > 1, there exists a Hadamard

matrix of order 4k. The smallest dimension open case of this conjecture

is currently 4k = 668.

The 0, 1 Counterpart

If we replace each 1 by 0, and each -1 by 1, we get the 0, 1 counter-

part. These matrices are important in coding and design theory. The

Sylvester H8 matrix becomes the following matrix �8:

�8 =

2

6666666666664

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1

3

7777777777775

Codes Related to Hadamard Matrices

We will use Hadamard matrices to define Simplex and Hadamard

codes.
2

We will use Sylvester matrices to construct linear codes, but 2 Hadamard matrices are also re-

lated to Reed-Muller and polar

codes.

the procedure holds for the Hadamard matrices in general, just the

codes will not be necessarily linear.

The Simplex Codes

If we delete the first column from �8, we get the following matrix:

2

6666666666664

0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 0 1 0 1
0 1 1 1 1 0 0
1 1 0 1 0 0 1

3

7777777777775

The rows of this matrix are codewords of the [7, 3, 4] Simplex code,

which is the dual of the [7, 4, 3] Hamming code. In general, if we start

with H2k , the rows of the corresponding �2k with the first 0 removed

form a [2k - 1,k, 2k-1] simplex code. This code is the dual of the [2k -

error control coding 3

1, 2k - 1 - k, 3] Hamming code. What are the rows of the generator

matrix of the simplex code?

Note that there are 2k codewords of the simplex code and they live

in a 2k - 1 dimensional space, hence the name simplex.
3

A simplex 3 An m-simplex is a m-dimensional

polytope which is the convex hull of

its m+ 1 vertices.

(plural: simplexes or simplices) is the higher-dimensional generaliza-

tion of the triangle. The triangle is a 3-dimensional polytope in the

2-dimensional space.

Example: Codewords of the [3, 2] Simplex code are connected in a tetra-

hedron:

(Its dual code is the Hamming code {000, 111})

011 111

001 101

010 110

000 100

The Hadamard Codes
The [32, 6, 16] Hadamard code is the

code used in the period 1969 – 1972
by the Mariner spacecraft to trans-

mit images of Mars.

The rows of the matrix "
�2k-1

-�2k-1

#

form codewords of the Hadamard [2k-1
,k, 2k-2].

Error Control Coding
1

1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin

Lecture #14, March 26
This lecture introduces 1) combinatorial designs and 2) codes for dis-
tributed storage.

Combinatorial Designs

A design is a pair (P,B) where P is a set of elements points and B is a
set of non-empty subsets of P called blocks. The blocks are required to
satisfy certain “balance” properties, and the combinatorial design the-
ory asks when that is possible.2 The theory originated with the design 2 As for codes, we are concerned

with strings of letters and relation-
ships between these strings.

and analysis of statistical experiments. Contemporary applications are
wide, and include, e.g., biology and networking.

Block Designs aka t-Designs

The most studied designs are the balanced (incomplete) block designs
(BIBD), often called just block designs or t-designs:

Definition: A t- (v,k, �) design is a pair (P,B) where P is a set of v

elements, called points, and B is a collection of distinct subsets of t

points of P, called blocks,3 such that every subset of points of size t is 3 “incomplite” comes from k < v.
contained in exactly � blocks.4 4 The balance condition.

Example: A 2 - (7, 3, 1) design:

X = {1, 2, 3, 4, 5, 6, 7}

A = {123, 145, 167, 246, 257, 347, 356}

The number of blocks in B is determined by the parameters t, v,k,
and �. There are several special cases of t-designs, e.g.,

• If � = 1, a t-design is called a Steiner S(t,k, v) system or a Steiner
t-design. When t = 2, we have a Steiner triple system. The 2 -

(7, 3, 1) design in the figure is also an S(2, 3, 7) Steiner triple system.
The blocks are the 7 lines, each containing 3 points. Every pair of
points belongs to a unique line.

• If b = v, the t-design is symmetric and k- � is called its order.

• A symmetric 2 - (v,k, 1) design, i.e., a symmetric S(2,k, v) design)
turns out to be a projective plane of order k - 1. The 2 - (7, 3, 1)
design in the figure is also known as the the Fano plane in finite
geometry. It has 7 points and 7 lines, with 3 points on every line
and 3 lines through every point. Note the symmetry. Where is the
7-th line? The Fano plane

Example: The Kirkman’s Schoolgirl Problem:

Fifteen girls walk to school three side-by-side for seven days in succes-
sion: it is required to arrange them daily so that no two walk side-by-
side more than a single day. � another Steiner triple system.

error control coding 2

It is often convenient to describe a t-design by giving a matrix that
indicates the points that are in each block.

Definition: An incidence matrix of a (v,k, �) block design is a v ⇥ k

zero/one matrix indexed by the points and the blocks which has a 1
at the entry i, j iff point i belongs to block j.

Projective planes and Geometries

Consider a vector space Fk
q. The number of different basis of this

space (that is, the number of ways we can chose k linearly independent
vectors) is given by is

(qk - 1)(qk - q) . . . (qk - qk-1)

How many k-dimensional subspaces does the n-dimensional space
Fn
q have? This number is given by the Gaussian binomial coefficient5 5 q analog of the binomial coefficient

defined as

n

k

�

q

=
(qn - 1)(qn - q) . . . (qn - qk-1)

(qk - 1)(qk - q) . . . (qk - qk-1)

Consider the 3-dimensional vector space F
3
q. There are q2 + q+ 1

different 1-dimensional subspaces of F
3
q. They will correspond to our

points and all 2-dimensional subspaces of F
3
q will be our blocks. there

are q+ 1 points in each block, and any two blocks intersect at exactly
one point. Observe that this structure is a 2 - (q2 + q+ 1,q+ 1, 1) de-
sign. For q = 2, we have the Fano plane.

We can obtain d-dimensional projective geometry PGd(q) and the cor-
responding

2 -
⇣qd+1 - 1

q- 1
,
qd - 1
q- 1

,
qd-1 - 1
q- 1

⌘
- design

by generalizing this reasoning to Fd+1
q with its 1-dimensional sub-

spaces as points and (d- 1)-dimensional subspaces as blocks.

Coding in Distributed Storage

In distributed storage, disks fail and data changes, but storage relia-
bility must be maintained.

Example: Consider storing 2 equal-
size content pieces a and b on 4
identical disks:
System 1: stores a, a, b, b and
System 2: stores a, b, a+ b, a- b

If a disk (node) fails, we want to

1. still be able to recover data from the remaining storage (reliability)6 6 Which system is more reliable?

2. reproduce the lost data (or reliability) on each replacement disk
with, e.g.,

error control coding 3

• minimal data download from the remaining storage (repair band-
width)7 7 Which system needs less repair

bandwidth?or
• by downloading (coded) data from only a few other nodes (lo-

cality).8 8 Which system has better locality?

If the stored data changes, we must accordingly update the storage.9 9 Which system is more update effi-
cient?

Codes with Locality and Availability

Locality

Suppose a single position in a codeword is erased. How many other
symbols do we need to read to recover the erased symbol?
If the code is [n,k] MDS, we need k symbols.
Locally repairable codes (LRC) allow repair of an erasure using fewer
than k other symbols. A set of symbols that can repair a given symbol
is referred to as the repair group of that symbol.

We say that a code symbol has locality r if it can be recovered by
accessing at most r other code symbols (that is, the largest repair group
has r symbols.) If all code symbols have locality r, we say that the code
is r-LRC.

Availability

We say that a code provides availability, when one erased symbol can
be recovered form multiple disjoint sets of other code symbols, that is
there are multiple repair groups for each symbol.
We say that a code has (r, t)-availability if each symbol has t disjoint
repair groups each of size at most r

Example: The [7, 3] Simplex code is a (2, 3)-availability code.

G =

2

64
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

3

75

2

64
0
0
1

3

75

2

64
1
0
0

3

75

2

64
0
1
0

3

75

repair groups for the first position:

{23, 45, 67}
(any two columns in G that XOR to 1)

Implications on G and Code Parameters

The minimum distance penalty for an (n,k, r, t)-LRC in which any
repair group contains only 1 parity symbol

dmin 6 n- k-

⇠
kt

r

⇡
+ t+ 1

Note that when r = k, we get the Singleton bound.
For an (n,k, r, t)-LRC (linear or non-linear), we have

dmin 6 n- k-

⇠
t(k- 1) + 1
t(r- 1) + 1

⇡
+ 2

The locality and availability dictate the (linear) dependence within
the columns of the generator matrix. The i-th symbol has locality r

error control coding 4

if there are r other columns of G such that the i-th column is in their
span. If there are t disjoint sets of such r columns, then the i-th symbol
has availability t.

Recall that for [2m - 1,m, 2m-1] binary simplex code, the columns
of the generator matrix G are all distinct nonzero vectors of Fm

2 . There-
fore, any two columns of G add up to another column of G, and thus
the [2m - 1,m, 2m-1] binary simplex code has locality r = 2 and avail-
ability t = (2m - 1 - 1)/2 = 2m-1 - 1.

Homework – due on April 4

1. Construct the incidence matrix of the points and lines in the Fano
plane, and compare with �8 defined in Lecture 13.

Error Control Coding 1
1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin
Lecture #15, March 28

This lecture is about Reed-Muller codes and majority logic decoding.

Reed-Muller Codes

Definition(s)

RMq[r;m] Reed Muller2 code with integer parameters m and r, 0 6 2 RM codes are introduced in 1954,
first by Muller and shortly after by
Reed, who also provided a decod-
ing algorithm.

r 6 m, is the linear code over Fq obtained when all polynomials over
Fq in m variables and the total degree at most r are evaluated on the
elements of Fq. Data symbols are interpreted as the coefficients of the
monomials in the polynomial (as for RS codes). Cdeword symbols are
obtained by evaluating the polynomial on a different combination of
m variables in Fq.

We will denote the m variables by v1, v2, . . . , vm. For RMq[r;m], this
set of variables take values in Fm

q , and the monomials we use to build
our evaluation polynomial are given by

vd1
1 vd2

2 , . . . , vdm
m , di > 0 and

mX

i=1

di 6 r.

The polynomial is a linear combination of these monomials,3 and data 3 How many such monomials can
we have?symbols are coefficients uses for in these linear combinations.

We will mostly consider binary RM codes.4 4 RM2[1; 5] was used by Mariner 9
to send pictures from Mars in 1971,
and also in 3G cell phones for pro-
tecting some important meta data.

Example: Show that RM2[m;m] is the [2m, 2m, 1] universe code.

Example: Show that RMq[0;m] is the [qm, 1,qm] repetition code.

Example: For the RMq[1;m] code, we are linearly combining the fol-
lowing monomials:

1, v1, v2, . . . , vm

into the polynomial

a0 · 1 + a1 · v1 + a2 · v2 + · · ·+ am · vm

Example: What can we say about RM2[1; 3] code?5 5 RM2[1; 5] and RM2[2; 5] are fea-
tured in the famous Apple-Samsug
law suits.

The RM2[1; 3] code is generated by the set {1, v1, v2, v3}, and for each
combination of values of (v1, v2, v3), there is a code symbol. Since
(v1, v2, v3) 2 F

3
2 = {(0, 0, 0), (0, 0, 1), . . . , (1, 1, 1)}, the generator matrix

error control coding 2

of RM2[1; 3] is

G =

0

BBB@

1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0

1

CCCA

Another Way to Construct an RM2[r;m] Code

RM codes can be constructed recursively. RM2[r;m] is the following
concatenation of RM2[r;m- 1] and RM2[r- 1;m- 1]:

RM2[r;m] = {(u,u+w) | u 2 RM2[r;m- 1],w 2 RM2[r- 1;m- 1]}.

To see that this is true, note that a polynomial a(v1, . . . , vm-1, vm) in
m variables can be decomposed as

a(v1, . . . , vm-1,vm) = f(v1, . . . , vm-1) + vmg(v1, . . . , vm-1)

=

8
<

:
f(v1, . . . , vm-1), when vm+1 = 0,

f(v1, . . . , vm-1) + g(v1, . . . , vm-1), when vm+1 = 1.

We get the first 2m-1 code symbols of RM2[r;m] by evaluating the
polynomial a(v1, . . . , vm-1, vm) on Fm-1

2 ⇥ 0 and the other 2m-1 code
symbols by evaluating a(v1, . . . , vm-1, vm) on Fm-1

2 ⇥ 1.

Code Parameters

Data Ward Length
What is the message length k, i.e., how many different monomials in
m variables and total degree at most r are there in Fq? When q = 2,
we can easily compute this number this number. Since v · v = x, each
variable in the monomial has power either 0 or 1. Since, no more than
r variables can have degree 1, the message length is given by

k =
rX

d=0

✓
m

d

◆
.

Code Length
The length of RMq[r;m] is qm. Each codeword symbol is obtained by
evaluating the polynomial on a different combination of m variables
in Fq.

The Minimum Distance
The minimum distance of RM2[r;m] codes is 2m-r.

Proof (by induction): Recall that RM2[0;m] is a length 2m repetition code
and thus the minimum distance 2m = 2m-0, and the claim holds for

error control coding 3

all m. The RM2[m;m] is the universe code, hence dmin = 1 = 2m-m.

As an inductive hypothesis, assume that the claim holds up to m- 1
for all r s.t. 0 6 r 6 m- 1. Recall that

RM2[r;m] = {(u,u+w) | u 2 RM2[r;m- 1],w 2 RM2[r- 1;m- 1]}.

Let u,u0 2 RM2[r;m- 1] and w,w0 2 RM2[r- 1;m- 1]. We consider 2
cases:

1. If w = w0 then

d(c1, c2) =d
�
(u,u�w), (u0,u0 �w0)

�

=2d(u,u0) > 22m-1-r

with equality when d(u,u0) = 2m-1-r.

2. If w 6= w0 then

d(c1, c2) =d(u,u0) + d(u�w,u0 �w0)

=d(u� u0, 0) + d(w�w0 � u� u0, 0)

>d(u� u0, 0) + d(w�w0, 0)- d(u� u0, 0)

=d(w,w0) > 2(m-1-(r-1)) = 2m-r

We used d(x+ y, 0) > d(x, 0)- d(y, 0), which follows from the tri-
angle inequality of the Hamming distance and F2.

Majority Logic Decoding

Example: The RM2[2; 4] code is a [16, 11, 4] code. The monomials up to
degree 2 are

(1, v1, v2, v3, v4, v1v2, v1v3, v1v4, v2v3, v2v4, v3v4)

which give raise to the following generator matrix:

1 1111111111111111

v4 0000000011111111

v3 0000111100001111

v2 0011001100110011

v1 0101010101010101

v3v4 0000000000001111

v2v4 0000000000110011

v1v4 0000000001010101

v2v3 0000001100000011

v1v3 0000010100000101

v1v2 0001000100010001

error control coding 4

We denote the 11 data bits by

(a0,a4,a3,a2,a1,a34,a24,a14,a23,a13,a12)

and the codeword c0, c1, . . . , c15.
Note that the following identities hold:

a12 = c0 + c1 + c2 + c3

a12 = c4 + c5 + c6 + c7

a12 = c8 + c9 + c10 + c11

a12 = c12 + c13 + c14 + c15

Therefore if only one error occurred (one of the codeword bits flipped),
3 out of 4 of the sums above, i.e., the majority, will have the correct
value for a12.6 6 Observe the locality and availabil-

ity properties!

Error Control Coding 1
1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin
Lecture #16, April 2

This lecture introduces convolutional codes.

Finite State Codes

Finite state codes have memory (state), and the encoder output de-

pends on the input and the state. The state depends on the input and

the previous state. When these dependences are linear, we say that the

code is convolutional.

STATE

m symbolsk symbols

INPUT OUTPUT

n symbols

Convolutional Codes

A convolutional encoder is realized as a linear sequential circuit with

m memory elements, k symbols and n output symbols. Therefore, the

output depends on the current k input symbols (current input block)

and the m preceding input blocks. The encoder is a set of n digital

filters (linear time-invariant systems). We get the code sequence by

interleaving the outputs of these filters. Typically k and n are small

integers. Large minimum distances are achieved by increasing the

memory order m rather than k and n. The rate of the code is k/n.

Convolutional codes were introduced by Elias in 1955. Various de-

coding schemes followed: sequential decoding in 1961 by Wozencraft,

majority logic decoding in 1963 by Messey Massey, ML decoding in

1967 by Viterbi, MAP decoding in 1974 by Bahl, Cocke, Jelinek and

Raviv (BCJR). One of the most important class of codes, turbo codes,

are based on convolutional codes and the BCJR algorithm. Turbo codes

were invented in 1993 by Berrou, Glavieux, and Thitimajshima.

error control coding 2

Convolutional Code Representations

There are several ways to define a convolutional code. The figure

shows 3 such possibilities for a rate 1/2 convolutional code.

D D

+

y

+

y

x

Encoding

Let xt denote the input to the encoder at time t. Then, for the encoder

in the above figure, the state at time t is given by xt-1, xt , and the

output of the encoder is given by

y1
t = xt + xt-2 y2

t = xt + xt-1 + xt-2

To a rate k/n convolutional code, we associate a k⇥n transfer function

matrix G(D). For our rate 1/2 example code, we have

G(D) =
h
1 +D2 1 +D+D2

i

error control coding 3

The infinite generator matrix of the code starts as follows:

2

6664

1 1 0 1 1 1
1 1 0 1 1 1

1 1 0 1 1 1
1 1 0 1

3

7775

Systematic Encoder

Transfer function matrix G(D) can be turned into a systematic form by

identifying a k⇥ k submatrix T(D) and multiplying G(D) by T-1(D)

to get the corresponding systematic matrix Gs(D):

Gs(D) = T-1(D)G(D)

Our rate 1/2 code has the following systematic transfer function ma-

trix:

G(D) =
h
1 1+D+D2

1+D2

i

Note that if the elements of G(D) are FIR filters (polynomials in D),

then the elements of Gs(D) are in general rational functions in D, that

is, IIR filters.

Example: Suppose

G(D) =

"
1 +D D 1
D2 1 1 +D+D2

#

.

We can take the first two columns of G(D) as T(D), and get

T(D) =

"
1 +D D

D2 1

#

T-1(D) =
1

1 +D+D3

"
1 D

D2 1 +D

#

.

Then

Gs(D) = T-1(D)G(D) =

"
1 0 1+D+D2+D3

1+D+D3

0 1 1+D2+D3

1+D+D3

#

Recursive Encoder

Example: Consider the rate 2/3 code with the systematic matrix transfer

function:

G(D) =

"
1 0 D

1+D3

0 1 D2

1+D3

#

error control coding 4

x1

x2

y1

y2

y3D + D + D

Catastrophic Encoder

When errors occur in a codeword, decoding may result in even more

errors. Consider, for example, the [3, 1, 3]2 repetition where 000 re-

ceived as 110 will be decoded as 111. In block codes errors cannot

propagate very far because of finite size blocks. This is not necessarily

the case for convolutional codes as it is possible for a finite error in

the code sequence to have an infinite error in the corresponding input

sequence.

We say that a convolutional mapping is catastrophic if there is some

code sequence y(D) with finitely many 1s that results from an input

sequence x(D) with infinitely many 1s. Every code has catastrophic

and non-catastrophic encoders. Every systematic generator matrix of

a convolutional code, is non-catastrophic.

Error Control Coding 1
1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin
Lecture #17, April 4

This lecture is about Reed-Muller codes and majority logic decoding.

Viterbi Decoding of Convolutional Codes

Distance Measures

The `-th order column distance of a rate k/n encoder is the mini-
mum Hamming weight of the code sequences of length `+ 1 n-tuples
(branches in the trellis), which result from an information sequence
with non-zero first k-tuple.

The free distance dfree of a convolutional code is defined as the
minimum Hamming weight of any non-zero codeword of that code.
Recall that we assume that m termination blocks are appended to the
input data, and thus the codewords start from and end in the all-zero
state. Our example code has a minimum distance 5.

We can find dfree by using the trellis diagram of the code. We start
from the all zero state. We consider paths that diverge from the zero
state and merge back to the zero state, regardless of the length but
without intermediate passes through the zero state. The procedure is
similar to decoding of convolutional codes by the Viterbi algorithm.

Decoding on the Trellis

00

10

01

11

00

10

01

11

0/00
1/11

0/
11

1/00

0/011/10

0/10

1/01

00
00 10

00 10 01 11

00 10 01 11

00 10 01 11

00 10 01 11

00 10 01 11

00 01

00

00 10 01 11

00 10 01 11

0/
00

1/
11 0/1

1 1/
00 0/
01

1/1
0

0/
10 1/

01

se
nt

re
ce

iv
ed

de
co

de
d

11
10

10
00

10
01

10
11

Error Control Coding
1

1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin

Lecture #18, April 9
This lecture covers syndrome decoding of Linear Codes.

Syndrome decoding finds the codeward which is the closest to the
received word, i.e., it is the minimum distance decoding.

The [7, 4] Hamming Code Example

C = {0000000, 0001111, 0010110, 0011001, 0100101, 0101010, 0110011, 0111100,

1000011, 1001100, 1010101, 1011010, 1100110, 1101001, 1110000, 1111111}.

For all c 2 C, we have

c ·HT = 0 where H =

2

64
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

3

75 .

Linear code is the null space of the parity check matrix.

Error Model

The bit flip error model corresponds to binary addition of vectors hav-
ing 1s at places where errors occurred and 0s otherwise, that is, we
receive

r = c+ e

where, e.g.,

e =
h
0 1 0 0 0 0 0

i
means an error happened at position 1.

e =
h
0 0 0 0 0 1 1

i
means errors happened at positions 6 and 7.

) r can be any word, i.e., any vector in F
7
2.

Note that

r ·HT = (c+ e) ·HT = c ·HT
| {z }

=0
+e ·HT = e ·HT syndrome s.

s = 0) no error (true for all codes)
In this example, when s matches the i-th column of H, the i-the bit of
c was flipped.) we can get c by flipping back the i-th bit of r.

How helpful is the syndrome in general? In general, syndrome de-
coding is not this simple. For short codes, it is still very efficient,
essentially a lookup table. Lookup tables are traditionally avoided for
longer codes over large fields, and for some classes of linear codes,
more efficient algorithms exist.

error control coding 2

Cosets and the Standard Array

Let G be a group, � a subgroup of G, and x an element of G. Then

x+ � = {xy : y 2 � } and � + x = {yx : y 2 � }

are the left and the right cosset of � in G with respect to x. Observe
the following:

• When G is Abelian, we have x+ � = � + x.

• When x 2 � , we have x+ � = � + x = �

For an [n,k,d] linear code C, the received words will be in Fn
2 , We

are interested in all cossets of C in Fn
2 . A standard array of C when

d > 3 is a table of 2n-k rows and 2k columns, where we arrange all
elements Fn

2 as follows:

• In the top row (row 0), we list the codewords, starting with the
all-zero codeword.

• For the next row, we choose some2 minimum-weight word not yet 2 The resulting array depends on
this choice.in the array, say �, and list �+C starting with �.

• We repeat the last step until all element of Fn
2 appear in the table.

We call the first element of each row is the coset leader. If codeword
c appears in the first row and j-th column, then the row with cosset
leader � has �+ c in the j-the column. Each received word is corrected
to the codeword on top of its column.

Decoding of the [3, 1, 3] Hamming and the [3, 2, 2] Simplex Codes

The [3, 1, 3] Hamming Code

Recall that

G =
h
1 1 1

i
and H =

"
0 1 1
1 0 1

#

We have the following standard array:

000 111 code (syndrome 00)
001 110 coset with syndrome 11
010 101 coset with syndrome 10
100 011 coset with syndrome 01

error control coding 3

The [3, 2, 2] Simplex Code

Recall that

G =

"
0 1 1
1 0 1

#

and H =
h
1 1 1

i

We have the following standard array:

000 011 101 110 code (syndrome 0)
001 010 100 111 coset with syndrome 1

Recall that the [2k - 1,k, 2k-1] simplex code is the dual of the [2k -

1, 2k - 1 - k, 3] Hamming code. Note that there are 2k codewords of
the simplex code and they live in a 2k - 1 dimensional space, hence
the name simplex. A simplex (plural: simplexes or simplices) is the
higher-dimensional generalization of the triangle. The triangle is a 3-
dimensional polytope in the 2-dimensional space, and An m-simplex
is a m-dimensional polytope which is the convex hull of its m + 1
vertices.

Homework - due April 16

Compute a standard array for the [7, 3, 4] Simplex code.

Error Control Coding 1
1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin
Lecture #19, April 11

This lecture covers Syndrome Decoding of Linear Codes.

Decoding of the (3, 6) LDPC Code on the BEC

The BEC(✏)

What is the fraction of errors over n channel uses? The number of

errors is the Binomial random variable X ⇠ B(n,p). The probability of

getting exactly m errors is given by

Pr(X = m) =

✓
n

m

◆
✏
m(1 - ✏)n-m

, m = 0, 1, 2, . . . ,n.

Note that any number of errors from 0 to n can happen, but as n

increases, it tends to concentrate around the mean n✏. Recall that the

variance is n✏(1 - ✏).

Example: n = 1000, ✏ = 0.1, 0.5, 0.9.

0 200 400 600 800 1000

0.
00

0.
01

0.
02

0.
03

0.
04

number of chanel errors

pr
ob
ab
ili
ty

error control coding 2

Message Passing Decoding

In message passing decoding of an LDPC code on the BEC, we derived

the evolution of the probability that the messages passed from variable

to check nodes is 0 "erasure") from round i to round i+ 1 to be

pi+1 = ✏�(1 - ⇢(1 - pi)) (1)

for a code with the left degree distribution generating polynomial �(x)

and the right degree distribution generating polynomial ⇢(x), and the

channel erasure rate ✏. For the (3, 6) code, we have

�(x) =
X

d`

�d`
x
d`-1 = x

5
and ⇢(x) =

X

d

⇢dx
d-1 = x

2
.

If we start with p1 = ✏ and run the recursions (1) for 100 iterations, we

get the following evolution as a function of ✏:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

chanel error rate

re
si

du
al

 e
rr

or
s

Note that for small ✏, very few iterations are sufficient to achieve 0
residual errors, while for ✏ close to the threshold ⇡ 0.43 many iter-

ations are required and contribute diminishing improvements. How

would this figure differ from its counterpart obtained by simulation?

error control coding 3

Q: For which ✏ will the function ✏[1 - (1 - x)5]2 have fixed points?

A: When ✏ > ✏
⇤

where

✏
⇤ = min

x2[0,1]

x

[1 - (1 - x)5]2
.

For ✏ < 0.4294, ✏[1 - (1 - x)5]2 has no fixed point =) pi ! 0 as

i ! 1.

For ✏ = 0.4295, ✏[1 - (1 - x)5]2 gets a fixed point at 0.2652.

Bounds on the Decoding Threshold

The (3, 6) code is a rate 1/2 code. What happens when more than a half

of the data is erased? What happens when ✏ = 1/2? What happens

between ✏ = ✏
BP

and ✏ = 0.5?

✏

✏
BP

✏
MAP

1 - dl
dr

For the (3, 6) code, we have ✏
BP = 0.4294, ✏

MAP = 0.4881, and 1- dl
dr

=

0.5.

LDPC Codes have very good performance, but they do have error

floors. Theoretical proofs are mostly limited to BEC, but there are

computational methods to estimate the performance in general. Irreg-

ular LDPC codes perform better, but their degree distributions have to

be designed with a channel in mind as they do not perform universally

well for all channels.

LDPC Codes & Statistical Physics

The Ising Model of Magnetism

Consider a physical system where n electrons with spins �i 2 {+1,-1}
are arranged in a d-dimensional lattice

2
⇤. A spin configuration is an 2 A lattice in Rd

is a subgroup of

Rd
which is isomorphic to Zd

and

spans Rd
.

assignment of a spin value to each electron in ⇤

Each lattice site j has an external magnetic field hj interacting with

it, and for any two adjacent lattice sites i and j, there is spin coupling

(an interaction) characterized by Jij. The energy of a configuration is

given by the Hamiltonian function:

H(�1, . . . ,�n) = -
X

hi ji
Jij�i�j - µ

X

j

hj�j

The notation hi ji indicates that sites i and j are nearest neighbors, and

µ denotes the magnetic moment.

error control coding 4

The probability of a state with configuration �1, . . . ,�n in equilib-

rium follows the Boltzmann distribution:

P�(�1, . . . ,�n) / exp

h
-
H(�1, . . . ,�n)

kBT

i

where kB is the Boltzmann constant and T is the temperature. At high

temperature, the spin system resembles a liquid At low temperature,

it has minimum energy w.h.p. and can freeze into a ground state. For

d > 2, there is a phase transition at a critical temperature.

LDPC Codes

Spin systems are mathematically similar to LDPC codes in that there

is a global order from local interactions. Codewords are ordered crys-

talline structures. Code is defined using generalized coupling coeffi-

cients between the variable nodes. Local observations correspond to

the local magnetic fields hi.

Between the BP and the MAP thresholds, the LDPC system cor-

responds to a supercooled liquid. Correct answer (crystalline state)

has minimum energy w.h.p. but spontaneous crystallization (i.e., de-

coding) does not occur w.h.p. The minimium-energy configuration

corresponds to the MAP solution.

Spatially Coupled Codes on BEC

Spatially-Coupled (SC) LDPC codes are constructed by coupling many

regular LDPC codes in a chain. To design a (dl,dr,L) SC-LDPC code,

we start with L copies of uncoupled (dl,dr) LDPC codes, and then

re-connect edges randomly with w neighboring codes.

lim
w 1

✏
BP(dl,dr,L) = ✏

MAP(dl,dr)

Code blocks are spatially coupled by spreading edges over time. The

resulting graph has a structured irregularity, which leads to wave-like

decoding.

Spatially coupled codes came out of the "convolutional codes" ideas

and community. However, their analysis is inspired by the connections

with statistical mechanics.

error control coding 5

An Illustration by Dan Costello (check out the video)

The Tanner graph of the original code:

D. J. Costello, Jr., “Spatial Coupling vs. Block Coding: A Comparison” / 5

LDPC Block Codes

LDPC codes are defined on a sparse bipartite graph

Graph-based codes can be decoded with low complexity using iterative
belief propagation decoding

Desirable properties of LDPC codes:

Low error floors (typical of regular LDPC codes)

Waterfall performance close to capacity (typical of optimized
irregular LDPC codes)

1

We start with a (3, 4) regular LDPC code ...

L copies of the Tanner graph:

D. J. Costello, Jr., “Spatial Coupling vs. Block Coding: A Comparison” / 5

g

Consider the transmission of consecutive LDPC block code codewords

What are Spatially Coupled Codes?

2

... and copy the graph L times.

Coupling of the neighboring copies:

D. J. Costello, Jr., “Spatial Coupling vs. Block Coding: A Comparison” / 5

g

Consider the transmission of consecutive LDPC block code codewords

Code blocks are spatially coupled by spreading edges over time

The resulting graph has a structured irregularity

This leads to wave-like decoding

What are Spatially Coupled Codes?

2

We then disconnect some edges from their original check nodes and

connect them to the checks in other copies of the original graph. Note

that we will have to add some additional check nodes, which means a

reduction in code rate.

http://www.birs.ca/events/2015/5-day-workshops/15w5150/videos/watch/201510131035-Costello.html

error control coding 6

Sliding window decoding:

D. J. Costello, Jr., “Spatial Coupling vs. Block Coding: A Comparison” / 5

g

Consider the transmission of consecutive LDPC block code codewords

Code blocks are spatially coupled by spreading edges over time

The resulting graph has a structured irregularity

This leads to wave-like decoding

What are Spatially Coupled Codes?

2

In practice, SC-LDPC codes are decoded with a sliding window decoder

W
The resulting graph has a structured irregularity, which leads to wave-

like decoding.

D. J. Costello, Jr., “Spatial Coupling vs. Block Coding: A Comparison” / 5

g

Consider the transmission of consecutive LDPC block code codewords

Code blocks are spatially coupled by spreading edges over time

The resulting graph has a structured irregularity

This leads to wave-like decoding

What are Spatially Coupled Codes?

2

In practice, SC-LDPC codes are decoded with a sliding window decoder

W

The decoding process is similar to a water freezing experiment you

can see here.

https://www.youtube.com/watch?v=Xe8vJrIvDQM

Error Control Coding 1
1 Rutgers, ECE 548, Spring 2019

Prof. Emina Soljanin
Lecture #20, April 16

This lecture is about HARQ.

Turbo Codes Encoders

xt

⇧xt

yp
t

ys
t

⇧

Turbo (mother) code in 3GPP has the following constituent code

G(D) =
h
1 1+D+D3

1+D2+D3
1+D+D2+D3

1+D2+D3

i

Note that the code is systematic and recursive. Its rate is 1/5, but it is
used at rates 1/2, 1/3, 1/4, and 1/5 with puncturing.

Communications Channel Models

A General Model

A communications channel involves at least 2 random variables:

X – the input; its range ⌦X is called the input alphabet

Y – the output; its range ⌦Y is called the output alphabet

transmitter channel receiver
X Y bX

The relation between the input and the output is described by, e.g.,

error control coding 2

• the conditional PDF of the output given the input W(Y | X)

(we call W the transition probability)

• a noise RV Z added to the input s.t. Y = X+Z.

Binary Erasure Channel BEC(✏)

Binary input and ternary output: ⌦X = {0, 1}, ⌦Y = {0, 1,-}

W(1 | 0) = W(0 | 1) = 0

W(0 | 0) = W(1 | 1) = 1 - ✏

W(- | 0) = W(- | 1) = ✏ X Y

0 0
1- ✏

1 1

-

1- ✏

✏

✏
The Binary Symmetric Channel BSC(p)

Binary input and output: ⌦X = ⌦Y = {0, 1}
W(0 | 0) = W(1 | 1) = 1 - p

W(1 | 0) = W(0 | 1) = p

X Y

0 0
1- p

1 11- p

p

p
We can instead say

Y = X+Z mod 2 binary addition, XOR

where Z ⇠Bernoulli(p)

Binary Input Additive Gaussian Noise Channel

-1 or 1 input and real-valued output: ⌦X = {-1, 1}, ⌦Y = R

W(y | -1) =
1p

2�2⇡
e-

(x+1)2
2�2

W(y | 1) =
1p

2�2⇡
e-

(x-1)2
2�2

-1 0 1

x = -1
x = 1

y

W(y | x)

We can instead say Y = X+Z where Z ⇠ N(0,�2).

A Bound on Error Rate:

For a channel with binary input alphabet {0, 1} and discrete output al-
phabet Y, we have two probability mass function W(Y|0) and W(Y|1).
The Bhattacharyya noise parameter2 for the channel is defined as fol- 2 Bhattacharyya coefficient is de-

fined for any two discrete or contin-
uous probability distributions mea-
sures, and it measures how close
they are to each other.

lows:
� =

X

b2Y

p
W(b|0)W(b|1).

In the case of a time invariant and memoryless channel with the
parameter �, if two sequences are at Hamming distance d apart, then
the receiver will confuse one for the other with probability lower than
�d.

	Bits of Information
	Some Observations
	Problems

