

Syllabus of LLMs

Advanced Topics – Large Language Models

ECE 16:332:539:02 Spring 2025 (Electrical and Computer Engineering, Rutgers University at New Brunswick, NJ)

Instructor: Professor Zhou

Name: Xing Zhou

Email: Xing.Zhou@rutgers.edu

Office: EE – 113

Class Meets:

Time: Thursday @ 2:00 pm ~5:00 pm

Place: COR – 538

I. Course Information

Semester: Spring 2025 (January 21 – May 8, 2025)

Credit Hours: 3

Final Exam: Final Exam + Main Project Presentations

Office Hours: Thursday 5:10 pm~ 6:10 pm

II. Course Overview

Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) in recent years, establishing the foundation for state-of-the-art systems. This course will explore cutting-edge research on pre-trained language models like GPT, BERT, and their derivatives, which are built on transformer-based architectures. These models, capable of processing and generating human-like text, are crucial for tasks such as translation, question-answering, and summarization. Students will dive into **technical foundations** (such as BERT, GPT, T5, mixture-of-expert models, and retrieval-based models.), **emerging capabilities** (knowledge representation, reasoning, few-shot learning, and incontext learning), **advanced techniques** (like attention mechanisms, fine-tuning and adaptation paradigms and the ethics of LLMs). Hands-on experience with tools like PyTorch and TensorFlow will allow students to build, fine-tune, and apply LLMs, creating applications like sentiment analysis and chatbots. Students are also expected to read and present research, and complete one final project.

Prerequisites: Machine Learning or its equivalent(s), Practical Python or Python for ML

III. Learning goals

- 1. This course is intended to prepare you for performing cutting-edge research in natural language processing, especially topics related to pre-trained language models. We will discuss the state-of-the-art, their capabilities and limitations.
- 2. Practice your research skills, including reading research papers, conducting literature survey, oral presentations, as well as providing constructive feedback.
- **3.** Gain hands-on experience through the final project, from brainstorming ideas to implementation and empirical evaluation and writing the final paper.

IV. Recommended Learning Materials

- 1. Transformers for Natural Language Processing and Computer Vision: Explore Generative AI and Large Language Models with Hugging Face, ChatGPT, GPT-4V, and DALL-E 3 3rd Edition by Denis rothman. Packt Publishing. ISBN -10: 1805128728 / ISBN-13: 978 1805128724
- 2. Natural Language Processing with Transformers by Lewis Tunstall, Leandro von Werra, and Thomas Wolf. O'REILLY. ISBN -10: 1098136799 / ISBN-13: 978 1837633784
- 3. Mastering Transformers: The Journey from BERT to Large Language Models and Stable Diffusion by Savas Yildinm and Meysam Asgari-Chenaghlu. ISBN -10: 1837633789/ ISBN-13: 978 1098136796
- 4. Hands-On Large Language Models: Language Understanding and Generation 1st Edition. By Jay Alammar and Maarten Grootendorst, O'REILLY. ISBN -10: 1098150961/ ISBN-13: 978 1098150969
- 5. Build a Large Language Model (From Scratch) by Sebastian Raschka, Manning. ISBN -10: 1633437167/ ISBN-13: 978–1633437166
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent System, 3rd Edition, by Aurélien Géron. O'REILLY. ISBN-10:1098125975/ISBN-13: 978-1098125974
- 7. Lecture notes will be posted in Canvas

V. Evaluation or Grading (Tentative)

1. Attendance: 10%

2. In-Class Participation: 10%

3. Two Individual Presentations (Topic: Paper Reading or Projects): 25%

4. Two Individual Projects: 25%

5. Final Exam: 30%

The grading scale is as follows:

A	= [90, 100]	 C ⁺ = [75, 79]	D += [65, 69]	F = [0, 59]
		C = [70, 74]		

VI. Course Delivery

- 1. This course consists of three parts: teaching, discussions and student presentations. Students are expected to attend the class and participate in the discussion.
- 2. Since this is an advanced course, we will learn this course with questions, and I will post several questions before each lecture.
- 3. We will be teaching and discussing the foundational technologies and methodologies as well as state-of- the-art some papers and topics in class. I will post all recommended papers and materials before each lecture.
- 4. All the course materials and communications would be posted on Canvas.

VII. Tips for Success

- 1. Regular attendance and active participation in class are crucial for success in this course.
- 2. Ask questions, answer questions, and don't hesitate to make educated guesses.
- 3. If you don't understand a particular concept, feel free to ask me in class or visit during office hours.
- 4. LLMs involve many emerging technologies; reading extensively from references can significantly broaden your knowledge.
- 5. Consistent hands-on practice is essential to digest, consolidate, and master theoretical knowledge and effectively solve problems.

VIII. Course Outline (Tentative)

Part 1 Theory

- 1.An Introduction to Large Language Models
- 2. Tokens and Embeddings
- 3. Looking Inside Large Language Models

Part 2 Applications

- 4. Text Classification
- 5. Text Clustering and Topic Modeling
- 6.Prompt Engineering
- 7. Advanced Text Generation Techniques and Tools
- 8. Semantic Search and Retrieval-Augmented Generation
- 9.Multimodal Large Language Models

Part 3 Training and Fine-Tuning

- 10.Creating Text Embedding Models
- 11. Fine Tuning Representation Models for Classification

- 12.Fine-Tuning Generation Models
- 13.Error Generic Data Poisoning Defense
- 14.Reverse-Engineering Attacks (REAs) on Classifiers

IX. Topics Covered Week by Week (Tentative)

W#	Date	Lecture Topics	Remark
Week 1	01/23	#01: Course Organization +An Introduction to Large Language Models	3 H for lecture
Week 2	01/30	#02: Tokens and Embeddings +Class Discussions on related topics	
Week 3	02/06	#03: Looking Inside Large Language Models + Class Discussions on related topics	
Week 4	02/13	#04: Text Classification +Text Clustering and Topic Modeling +Class Discussions on related topics	
Week5	02/20	#05: Prompt Engineering +Student Presentation ()	2 H for lecture 1 H for InPre
Week 6	02/27	#06: Advanced Text Generation Techniques and Tools +Student Presentation ()	2 H for lecture 1 H for InPre
Week 7	03/06	#07: Semantic Search and Retrieval-Augmented Generation +Student Presentation ()	2 H for lecture 1 H for InPre
Week 8	03/13	#08: Multimodal Large Language Models +Student Presentation ()	2 H for lecture 1 H for InPre
Week 9	03/20	Spring Recess(no class)	3/15 -3/23
Week 10	03/27	#09: Creating Text Embedding Models +Student Presentation ()	2 H for lecture 1 H for InPre
Week 11	#10: Fine-Tuning Representation Models for Classification +Student Presentation ()		2 H for lecture 1 H for InPre
Week 12	04/10	#11: Fine-Tuning Generation Models +Student Presentation ()	2 H for lecture 1 H for InPre
Week 13	k 13 04/17 #12:Error Generic Data Poisoning Defense +Student Project Presentation ()		2 H for lecture 1 H for InPre
Week 14	04/24	#13: Reverse-Engineering Attacks (REAs) on Classifiers +Class Discussions on related topics	
Week 15	05/01	#14: Student Group Project Presentation	
Week 16	05/08	#15: Final Exam (5/08 -5/14) Student Group Project Presentation	1.5 H for Exam 1.5 H for Team-Pre
Week 17	05/15	Summer Vacation	